Space–time interface-tracking with topology change (ST-TC)

To address the computational challenges associated with contact between moving interfaces, such as those in cardiovascular fluid–structure interaction (FSI), parachute FSI, and flapping-wing aerodynamics, we introduce a space–time (ST) interface-tracking method that can deal with topology change (TC). In cardiovascular FSI, our primary target is heart valves. The method is a new version of the deforming-spatial-domain/stabilized space–time (DSD/SST) method, and we call it ST-TC. It includes a master–slave system that maintains the connectivity of the “parent” mesh when there is contact between the moving interfaces. It is an efficient, practical alternative to using unstructured ST meshes, but without giving up on the accurate representation of the interface or consistent representation of the interface motion. We explain the method with conceptual examples and present 2D test computations with models representative of the classes of problems we are targeting.

[1]  Kenji Takizawa,et al.  Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity , 2013 .

[2]  Eugenio Oñate,et al.  A COMPRESSIBLE LAGRANGIAN FRAMEWORK FOR MODELING THE FLUID–STRUCTURE INTERACTION IN THE UNDERWATER IMPLOSION OF AN ALUMINUM CYLINDER , 2013 .

[3]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[4]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[5]  Ryo Torii,et al.  Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms , 2010 .

[6]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[7]  Guirong Liu,et al.  A moving-mesh gradient smoothing method for compressible CFD problems , 2013 .

[8]  Roger Ohayon,et al.  Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems , 2001 .

[9]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[10]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity , 2012 .

[11]  M. R. Lewis,et al.  A finite-element/boundary-element method for large-displacement fluid-structure interaction , 2012 .

[12]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[13]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[14]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[15]  E. Oñate,et al.  A coupled PFEM–Eulerian approach for the solution of porous FSI problems , 2012, Computational Mechanics.

[16]  Roger Ohayon,et al.  Energy approach for static and linearized dynamic studies of elastic structures containing incompressible liquids with capillarity: a theoretical formulation , 2012 .

[17]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[18]  A. Sameh,et al.  A nested iterative scheme for computation of incompressible flows in long domains , 2008 .

[19]  T. Tezduyar,et al.  Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling , 2008 .

[20]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[21]  Tayfun E. Tezduyar,et al.  Space–time SUPG finite element computation of shallow-water flows with moving shorelines , 2011 .

[22]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[23]  Tayfun E. Tezduyar,et al.  Modeling of Fluid-Structure Interactions with the Space-Time Techniques , 2006 .

[24]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[25]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[26]  Tayfun E. Tezduyar,et al.  A Numerical model based on the mixed interface‐tracking/interface‐capturing technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces , 2007 .

[27]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012, Computational Mechanics.

[28]  Tayfun E. Tezduyar,et al.  Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions , 2010 .

[29]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[30]  Yuri Bazilevs,et al.  CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION , 2013 .

[31]  Tayfun E. Tezduyar,et al.  Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters , 2011 .

[32]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[33]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[34]  René de Borst,et al.  On the Nonnormality of Subiteration for a Fluid-Structure-Interaction Problem , 2005, SIAM J. Sci. Comput..

[35]  Arif Masud,et al.  A multiscale stabilized ALE formulation for incompressible flows with moving boundaries , 2010 .

[36]  Tayfun E. Tezduyar,et al.  Multiscale sequentially-coupled arterial FSI technique , 2010 .

[37]  Genki Yagawa,et al.  Accurate fluid-structure interaction computations using elements without mid-side nodes , 2011 .

[38]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[39]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes , 2008 .

[40]  Tayfun E. Tezduyar,et al.  Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle , 2012 .

[41]  Tayfun E. Tezduyar,et al.  Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods , 2008 .

[42]  Murat Manguoglu,et al.  Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement , 2010 .

[43]  Roland Wüchner,et al.  Algorithmic treatment of shells and free form-membranes in FSI , 2006 .

[44]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[45]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[46]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[47]  Tayfun E. Tezduyar,et al.  PARALLEL FINITE ELEMENT SIMULATION OF 3D INCOMPRESSIBLE FLOWS: FLUID-STRUCTURE INTERACTIONS , 1995 .

[48]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[49]  Rainald Löhner,et al.  Extending the Range and Applicability of the Loose Coupling Approach for FSI Simulations , 2006 .

[50]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[51]  S. Yoshimura,et al.  Parallel BDD-based monolithic approach for acoustic fluid-structure interaction , 2012 .

[52]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[53]  Ming-Chen Hsu,et al.  Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms , 2010, Biomechanics and modeling in mechanobiology.

[54]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[55]  Tayfun E. Tezduyar,et al.  Modeling of fluid–structure interactions with the space–time finite elements: contact problems , 2008 .

[56]  Arif Masud,et al.  A Multiscale/stabilized Formulation of the Incompressible Navier–Stokes Equations for Moving Boundary Flows and Fluid–structure Interaction , 2006 .

[57]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[58]  Yuri Bazilevs,et al.  Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS , 2012 .

[59]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[60]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[61]  T. Wick Coupling of fully Eulerian and arbitrary Lagrangian–Eulerian methods for fluid-structure interaction computations , 2013 .

[62]  Tayfun E. Tezduyar,et al.  Computation of flow problems with the Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) , 2007 .

[63]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[64]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[65]  Murat Manguoglu,et al.  A parallel sparse algorithm targeting arterial fluid mechanics computations , 2011 .

[66]  Yuri Bazilevs,et al.  Free-Surface Flow and Fluid-Object Interaction Modeling With Emphasis on Ship Hydrodynamics , 2012 .

[67]  Yuri Bazilevs,et al.  Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation , 2011 .

[68]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[69]  A. Korobenko,et al.  STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES , 2013 .

[70]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[71]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[72]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[73]  I. Akkerman,et al.  Isogeometric analysis of free-surface flow , 2011, J. Comput. Phys..

[74]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[75]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[76]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[77]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[78]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[79]  G. Liu,et al.  Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves , 2012 .

[80]  Wulf G. Dettmer,et al.  On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction , 2008 .

[81]  Roland Hetzer,et al.  Left ventricular assist device. , 2002, The New England journal of medicine.