Adaptive tuning to bifurcation for time-varying nonlinear systems

Adaptive output feedback control algorithm providing exact tuning of adjustable parameters to unknown values which ensure desired bifurcation properties of the system is proposed. Design of the algorithm is based on passification and adaptive observer. Application examples like neural integrator, resonant pendulum and three dimensional oscillator, are presented and illustrated by simulation results.

[1]  M. L. Wiedenbeck,et al.  The Excitation of Heavy Nuclei , 1945 .

[2]  Alexander L. Fradkov,et al.  Nonlinear and Adaptive Control of Complex Systems , 1999 .

[3]  David J. Hill,et al.  Exponential Feedback Passivity and Stabilizability of Nonlinear Systems , 1998, Autom..

[4]  Xinghuo Yu,et al.  Bifurcation Control: Theory and Applications , 2003 .

[5]  E. Abed,et al.  Local feedback stabilization and bifurcation control, I. Hopf bifurcation , 1986 .

[6]  Hua O. Wang,et al.  Bifurcation control of a chaotic system , 1995, Autom..

[7]  W. Wonham,et al.  Probing signals for model reference identification , 1977 .

[8]  Eduardo Sontag,et al.  Forward Completeness, Unboundedness Observability, and their Lyapunov Characterizations , 1999 .

[9]  J. S-C,et al.  Probing Signals for Model Reference Identification , 1977 .

[10]  Dorothée Normand-Cyrot,et al.  Stability and stabilization , 1996 .

[11]  Eduardo D. Sontag,et al.  Lyapunov Characterizations of Input to Output Stability , 2000, SIAM J. Control. Optim..

[12]  Luc Moreau,et al.  Balancing at the border of instability. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Guanrong Chen,et al.  Resonance Control for a Forced Single-Degree-of-Freedom Nonlinear System , 2004, Int. J. Bifurc. Chaos.

[14]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[15]  Alexander Fradkov Passification of nonsquare linear systems , 2001, 2001 European Control Conference (ECC).

[16]  A. Loria,et al.  /spl delta/-persistency of excitation: a necessary and sufficient condition for uniform attractivity , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[17]  Denis Efimov,et al.  ADAPTIVE TUNING TO A BIFURCATION FOR NONLINEAR SYSTEMS WITH HIGH RELATIVE DEGREE , 2005 .

[18]  Guanrong Chen,et al.  Bifurcation Control: Theories, Methods, and Applications , 2000, Int. J. Bifurc. Chaos.

[19]  Vladimir I. Babitsky,et al.  Resonant Robotic Systems , 2003 .

[20]  Henk Nijmeijer,et al.  Adaptive observer based synchronisation , 1999 .

[21]  Eduardo D. Sontag,et al.  Feedback tuning of bifurcations , 2003, Syst. Control. Lett..

[22]  A. L. Fradkov Quadratic Lyapunov functions in the adaptive stability problem of a linear dynamic target , 1976 .