A Colimit Decomposition for Homotopy Algebras in Cat

Badzioch showed that in the category of simplicial sets each homotopy algebra of a Lawvere theory is weakly equivalent to a strict algebra. In seeking to extend this result to other contexts Rosický observed a key point to be that each homotopy colimit in SSet admits a decomposition into a homotopy sifted colimit of finite coproducts, and asked the author whether a similar decomposition holds in the 2-category of categories Cat. Our purpose in the present paper is to show that this is the case.

[1]  E. Riehl Basic concepts of enriched category theory , 2014 .

[2]  S. Lack A 2-Categories Companion , 2007, math/0702535.

[3]  G. M. Kelly,et al.  Flexible limits for 2-categories , 1989 .

[4]  G. M. Kelly,et al.  Two-dimensional monad theory , 1989 .

[5]  Michael Makkai,et al.  Accessible categories: The foundations of categorical model theory, , 2007 .

[6]  Richard Garner,et al.  On semiflexible, flexible and pie algebras , 2011, 1112.1448.

[7]  Stephen Lack,et al.  Coinverters and categories of fractions for categories with structure , 1993, Appl. Categorical Struct..

[8]  Combinatorial Model Categories Have Presentations , 2000, math/0007068.

[9]  G. M. Kelly Elementary observations on 2-categorical limits , 1989, Bulletin of the Australian Mathematical Society.

[10]  Rigidification of algebras over multi-sorted theories , 2005, math/0508152.

[11]  Michael H. Albert,et al.  The closure of a class of colimits , 1988 .

[12]  J. Rosický,et al.  Rigidification of Algebras Over Essentially Algebraic Theories , 2012, Appl. Categorical Struct..

[13]  Ross Street Categorical and Combinatorial Aspects of Descent Theory , 2004, Appl. Categorical Struct..

[14]  Edmund Robinson,et al.  A characterization of pie limits , 1991 .

[15]  Stephen Lack,et al.  Homotopy-theoretic aspects of 2-monads , 2006 .

[16]  N. Gambino Homotopy limits for 2-categories , 2008, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  Emily Riehl,et al.  Algebraic model structures , 2009, 0910.2733.

[18]  G. M. Kelly,et al.  Notes on enriched categories with colimits of some class (completed version) , 2005, math/0509102.

[19]  Michael Shulman,et al.  Enhanced 2-categories and limits for lax morphisms , 2011, 1104.2111.

[20]  S. Lack,et al.  Codescent objects and coherence , 2002 .

[21]  Algebraic theories in homotopy theory , 2001, math/0110101.