Search for Majorana neutrinos with the first two years of EXO-200 data

Many extensions of the standard model of particle physics suggest that neutrinos should be Majorana-type fermions—that is, that neutrinos are their own anti-particles—but this assumption is difficult to confirm. Observation of neutrinoless double-β decay (0νββ), a spontaneous transition that may occur in several candidate nuclei, would verify the Majorana nature of the neutrino and constrain the absolute scale of the neutrino mass spectrum. Recent searches carried out with 76Ge (the GERDA experiment) and 136Xe (the KamLAND-Zen and EXO (Enriched Xenon Observatory)-200 experiments) have established the lifetime of this decay to be longer than 1025 years, corresponding to a limit on the neutrino mass of 0.2–0.4 electronvolts. Here we report new results from EXO-200 based on a large 136Xe exposure that represents an almost fourfold increase from our earlier published data sets. We have improved the detector resolution and revised the data analysis. The half-life sensitivity we obtain is 1.9 × 1025 years, an improvement by a factor of 2.7 on previous EXO-200 results. We find no statistically significant evidence for 0νββ decay and set a half-life limit of 1.1 × 1025 years at the 90 per cent confidence level. The high sensitivity holds promise for further running of the EXO-200 detector and future 0νββ decay searches with an improved Xe-based experiment, nEXO.

M. Weber | C. Licciardi | A. Pocar | J. Walton | V. Belov | C. Y. Prescott | A. Karelin | A. Kuchenkov | Y. H. Lin | J. J. Russell | S. Kravitz | M. Danilov | A. Piepke | P. S. Barbeau | C. Chambers | M. Coon | A. Craycraft | T. Daniels | A. Dolgolenko | M. J. Dolinski | J. Farine | P. Fierlinger | D. Fudenberg | R. Gornea | G. Gratta | M. Hughes | B. Mong | D. Moore | P. C. Rowson | V. Stekhanov | M. Tarka | T. Tolba | J.-L. Vuilleumier | L. J. Wen | Y.-R. Yen | O.Ya. Zeldovich | M. Dunford | P. Vogel | M. Breidenbach | D. Tosi | T. Koffas | R. Killick | D. Tosi | P. Fierlinger | M. Dunford | T. Koffas | X. Jiang | J. Russell | M. Breidenbach | M. Danilov | D. Moore | A. Piepke | P. Vogel | G. Gratta | T. Brunner | L. Wen | A. Pocar | A. Odian | R. DeVoe | M. Tarka | K. Kumar | J. Farine | K. Graham | B. Cleveland | C. Ouellet | R. Maclellan | D. Sinclair | I. Ostrovskiy | G. Cao | L. Yang | Y. Zhao | J. Albert | C. Licciardi | C. Hall | J. Vuilleumier | A. Kuchenkov | Y. Yen | C. Prescott | P. Barbeau | D. Beck | V. Belov | C. Chambers | M. Coon | A. Craycraft | T. Daniels | S. Daugherty | J. Davis | S. Delaquis | T. Didberidze | A. Dolgolenko | M. Dolinski | W. Fairbank | D. Fudenberg | R. Gornea | M. Hughes | M. Jewell | A. Johnson | S. Johnston | A. Karelin | L. Kaufman | S. Kravitz | D. Leonard | B. Mong | R. Nelson | P. Rowson | A. Schubert | V. Stekhanov | T. Tolba | A. Waite | T. Walton | M. Weber | U. Wichoski | O. Zeldovich | I. Ostrovskiy | G. F. Cao | X. S. Jiang | Y. B. Zhao | A. Odian | G. Giroux | U. Wichoski | L. Yang | A. Burenkov | G. Giroux | D. Auty | C. Benitez-Medina | C. G. Davis | M. Dunford | W. Feldmeier | S. Herrin | T. Johnson | R. Killick | F. Leonard | M. Marino | A. Rivas | M. Rozo | S. Slutsky | E. Smith | K. Twelker | J. Walton | J. Bonatt | J. D. Wright | T. Brunner | A. Burenkov | B. Cleveland | S. J. Daugherty | R. DeVoe | S. Delaquis | W. Fairbank | M. J. Jewell | L. J. Kaufman | K. S. Kumar | D. S. Leonard | R. MacLellan | A. Schubert | EXO-200 Collaboration J.B. Albert | D. J. Auty | E. Beauchamp | D. Beck | C. Benitez-Medina | J. Bonatt | J. Chaves | J. Davis | T. Didberidze | W. Feldmeier | K. Graham | C. Hall | S. Herrin | A. Johnson | T. N. Johnson | S. Johnston | F. Leonard | M. G. Marino | R. Nelson | C. Ouellet | A. Rivas | M. P. Rozo | D. Sinclair | S. Slutsky | E. Smith | K. Twelker | A. Waite | T. Walton | E. Beauchamp | J. Chaves | E. Albert | J. Davis | J. B. D. J. P. S. E. D. V. C. J. M. T. A. G. F. C. J. Albert Auty Barbeau Beauchamp Beck Belov Benit | W. Fairbank Jr | O. Ya. Zeldovich | R. MacLellan | L. Wen | C. Hall | Y. H. Lin | W. Fairbank Jr. | C. Hall

[1]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[2]  D. Budjáš,et al.  Results on neutrinoless double-β decay of 76Ge from phase I of the GERDA experiment. , 2013, Physical review letters.

[3]  F. Cerutti,et al.  The FLUKA code: Description and benchmarking , 2007 .

[4]  G. Senjanovic,et al.  Neutrino Mass and Spontaneous Parity Nonconservation , 1980 .

[5]  M. R. Bhat,et al.  Evaluated Nuclear Structure Data File (ENSDF) , 1992 .

[6]  D. Tosi,et al.  Observation of two-neutrino double-beta decay in 136Xe with the EXO-200 detector. , 2011, Physical review letters.

[7]  P. Fierlinger,et al.  Systematic study of trace radioactive impurities in candidate construction materials for EXO-200 , 2007, 0709.4524.

[8]  José W. F. Valle,et al.  Neutrinoless Double beta Decay in SU(2) x U(1) Theories , 1982 .

[9]  M. Gell-Mann,et al.  Complex spinors and unified theories , 2013, 1306.4669.

[10]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[11]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[12]  J. Barea,et al.  Nuclear matrix elements for double- β decay , 2013, 1301.4203.

[13]  M. Auger,et al.  Improved measurement of the 2νββ half-life of 136 Xe with the EXO-200 detector , 2014 .

[14]  R. T. Perry,et al.  SOURCES-3A: A code for calculating ({alpha}, n), spontaneous fission, and delayed neutron sources and spectra , 1998 .

[15]  H. Klapdor-kleingrothaus,et al.  The evidence for the observation of 0ν beta beta decay: The identification of 0ν beta beta events from the full spectra. , 2006 .

[16]  E. Majorana,et al.  A Symmetric Theory of Electrons and Positrons(Il Nuovo Cimento 14(1937)171-184〔原著はイタリア語〕) , 1981 .

[17]  T. W. Halstead,et al.  Status and Prospects , 1984 .

[18]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[19]  P. Vogel,et al.  0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration , 2013, 1302.1509.

[20]  E. G. Myers,et al.  Mass and double-beta-decay Q value of Xe-136 , 2007 .

[21]  M. Decowski,et al.  Limit on neutrinoless ββ decay of 136Xe from the first phase of KamLAND-Zen and comparison with the positive claim in 76Ge. , 2012, Physical review letters.

[22]  Ettore Majorana Teoria simmetrica dell’elettrone e del positrone , 1937 .

[23]  J. Seiber Status and Prospects , 2005 .

[24]  J. Valle,et al.  Global status of neutrino oscillation parameters after Neutrino-2012 , 2012, 1205.4018.

[25]  R. Reifarth,et al.  The cosmic ray muon flux at WIPP , 2005 .

[26]  J J Russell,et al.  Search for neutrinoless double-beta decay in 136Xe with EXO-200. , 2012, Physical review letters.

[27]  A. Ferrari,et al.  FLUKA: A Multi-Particle Transport Code , 2005 .

[28]  Theodore A. Parish,et al.  SOURCES: a code for calculating (α,n), spontaneous fission, and delayed neutron sources and spectra , 2005 .

[29]  F. Nowacki,et al.  Disassembling the nuclear matrix elements of the neutrinoless ββ decay , 2008, 0801.3760.

[30]  S. Berman,et al.  Nuovo Cimento , 1983 .

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  F. Iachello,et al.  Phase space factors for double-$\beta$ decay , 2012, 1209.5722.

[33]  E. G. Myers,et al.  Mass and double-beta-decay Q value of 136Xe. , 2007, Physical review letters.

[34]  A. Barabash Precise half-life values for two neutrino double beta decay , 2010, 2009.14451.

[35]  C. Grandi,et al.  Nuclear Data for Science and Technology , 1998 .

[36]  J. Wilkerson,et al.  Neutrino Masses and Mixings: Status and Prospects , 2008 .

[37]  G. Martínez-Pinedo,et al.  Energy density functional study of nuclear matrix elements for neutrinoless ββ decay. , 2010, Physical review letters.

[38]  Giulio Racah,et al.  Sulla Simmetria Tra Particelle e Antiparticelle , 1937 .

[39]  M. Auger,et al.  The EXO-200 detector, part I: detector design and construction , 2012, 1202.2192.