Estimation of Integrated Volatility

The financial econometrics literature mainly focuses on the integrated volatility and cross-volatility on a fixed time horizon. Therefore, this chapter is devoted to the estimation of these quantities. In the context of the Fourier estimation method, the integrated volatilities are computed by simply taking the 0-th Fourier coefficient in formula ( 2.13). We begin with the study of the univariate estimator, for the ease of notation; nevertheless, the results holding for this case can be easily extended to the multivariate estimator that will be studied in Section 3.3, with special care to be paid for the asynchronous data case. Then, the issue of feasibility for these results is discussed by providing an estimator of the error asymptotic variance, called quarticity. Finally, the properties of the Fourier estimator versus different integrated volatility estimators proposed in the literature are outlined.

[1]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[2]  J. Jacod,et al.  High-Frequency Financial Econometrics , 2014 .

[3]  Chris Kirby,et al.  The Economic Value of Volatility Timing , 2000 .

[4]  Jean Jacod,et al.  Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9 , 2007 .

[5]  S. Sanfelici,et al.  Covariance Estimation and Dynamic Asset Allocation under Microstructure Effects via Fourier Methodology , 2011 .

[6]  Thomas H. Mcinish,et al.  Cointegration, Error Correction, and Price Discovery on Informationally Linked Security Markets , 1995, Journal of Financial and Quantitative Analysis.

[7]  Jeffrey R. Russell,et al.  Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations , 2011 .

[8]  M. Nielsen,et al.  Finite sample accuracy and choice of sampling frequency in integrated volatility estimation , 2008 .

[9]  P. Malliavin,et al.  A Fourier transform method for nonparametric estimation of multivariate volatility , 2009, 0908.1890.

[10]  K. J. Cohen,et al.  Friction in the trading process and the estimation of systematic risk , 1983 .

[11]  T. Bollerslev,et al.  Realized volatility forecasting and market microstructure noise , 2011 .

[12]  Jeffrey R. Russell,et al.  Using High-Frequency Data in Dynamic Portfolio Choice , 2008 .

[13]  G. Iori,et al.  Cross-correlation Measures in the High-frequency Domain , 2005 .

[14]  Frank de Jong,et al.  High frequency analysis of lead-lag relationships between financial markets , 1997 .

[15]  S. Sanfelici,et al.  Estimation of quarticity with high-frequency data , 2012 .

[16]  Michael W. Brandt,et al.  A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations , 2002 .

[17]  N. Shephard,et al.  Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading , 2010 .

[18]  Francesco Audrino,et al.  Modeling Tick-by-Tick Realized Correlations , 2008, Comput. Stat. Data Anal..

[19]  S. Sanfelici,et al.  Estimating Covariance Via Fourier Method in the Presence of Asynchronous Trading and Microstructure Noise , 2011 .

[20]  P. Hansen,et al.  Realized Variance and Market Microstructure Noise , 2005 .

[21]  E. Dimson Risk measurement when shares are subject to infrequent trading , 1979 .

[22]  E. Ghysels,et al.  Volatility Forecasting and Microstructure Noise , 2006 .

[23]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[24]  E. Barucci,et al.  On measuring volatility of diffusion processes with high frequency data , 2002 .

[25]  P. Hansen,et al.  Consistent Ranking of Volatility Models , 2006 .

[26]  T. Bollerslev,et al.  Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon , 1999 .

[27]  Chris Kirby,et al.  The economic value of volatility timing using “realized” volatility ☆ , 2003 .

[28]  P. Protter Stochastic integration and differential equations : a new approach , 1990 .

[29]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[30]  M. E. Mancino,et al.  The Fourier estimation method with positive semi-definite estimators , 2014, 1410.0112.

[31]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[32]  Myron S. Scholes,et al.  Estimating betas from nonsynchronous data , 1977 .

[33]  Jean Jacod,et al.  Quarticity and other functionals of volatility: Efficient estimation , 2012, 1207.3757.

[34]  Jeffrey R. Russell,et al.  Separating Microstructure Noise from Volatility , 2004 .

[35]  M. Martens Estimating Unbiased and Precise Realized Covariances , 2004 .

[36]  R. Oomen,et al.  Testing for Jumps When Asset Prices are Observed with Noise - A Swap Variance Approach , 2007 .

[37]  Tim Bollerslev,et al.  Measuring and modeling systematic risk in factor pricing models using high-frequency data , 2003 .

[38]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[39]  Dick J. C. van Dijk,et al.  Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data - But Which Frequency to Use? , 2005 .

[40]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[41]  N. Yoshida,et al.  On covariance estimation of non-synchronously observed diffusion processes , 2005 .

[42]  J. Bouchaud,et al.  Theory Of Financial Risk And Derivative Pricing , 2000 .

[43]  Ernst Schaumburg,et al.  A ROBUST NEIGHBORHOOD TRUNCATION APPROACH TO ESTIMATION OF INTEGRATED QUARTICITY , 2013, Econometric Theory.

[44]  Bin Zhou,et al.  High Frequency Data and Volatility in Foreign Exchange Rates , 2013 .

[45]  David Aldous,et al.  On Mixing and Stability of Limit Theorems , 1978 .

[46]  E. Barucci,et al.  On measuring volatility and the GARCH forecasting performance , 2002 .

[47]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[48]  P. Mykland A Gaussian calculus for inference from high frequency data , 2010, Annals of Finance.

[49]  J. Griffin,et al.  Covariance Measurement in the Presence of Non-Synchronous Trading and Market Microstructure Noise , 2009 .

[50]  R. Gencay,et al.  An Introduc-tion to High-Frequency Finance , 2001 .

[51]  J. Bouchaud,et al.  Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management , 2011 .

[52]  Mark Podolskij,et al.  Pre-Averaging Estimators of the Ex-Post Covariance Matrix in Noisy Diffusion Models with Non-Synchronous Data , 2010 .

[53]  Riccardo Colacito,et al.  Testing and Valuing Dynamic Correlations for Asset Allocation , 2005 .

[54]  Toshiya Hoshikawa,et al.  Nonparametric Estimation Methods of Integrated Multivariate Volatilities , 2008 .

[55]  F. Audrino,et al.  Realized Correlation Tick-By-Tick , 2007 .

[56]  A. Gloter,et al.  Limit theorems in the Fourier transform method for the estimation of multivariate volatility , 2011 .