Iterative reproducing kernel method for nonlinear variable-order space fractional diffusion equations

ABSTRACT In this paper, a numerical method is proposed for solving nonlinear variable-order space fractional diffusion equations. The method is based on the reproducing kernel theory and the iterative method. The convergence of the method is also discussed. Numerical examples are provided to show that the numerical method is computationally efficient.

[1]  Saeid Abbasbandy,et al.  A shooting reproducing kernel Hilbert space method for multiple solutions of nonlinear boundary value problems , 2015, J. Comput. Appl. Math..

[2]  Boying Wu,et al.  A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations , 2017, J. Comput. Appl. Math..

[3]  Tasawar Hayat,et al.  Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method , 2015, Soft Computing.

[4]  S. Li,et al.  A numerical method for singularly perturbed turning point problems with an interior layer , 2014, J. Comput. Appl. Math..

[5]  Kok Lay Teo,et al.  Design of allpass variable fractional delay filter with signed powers-of-two coefficients , 2014, Signal Process..

[6]  Stefan Samko,et al.  Fractional integration and differentiation of variable order: an overview , 2012, Nonlinear Dynamics.

[7]  Minggen Cui,et al.  Nonlinear Numerical Analysis in Reproducing Kernel Space , 2009 .

[8]  Boying Wu,et al.  A numerical technique for variable fractional functional boundary value problems , 2015, Appl. Math. Lett..

[9]  Mehdi Dehghan,et al.  A generalized moving least square reproducing kernel method , 2013, J. Comput. Appl. Math..

[10]  William R. Parke What is Fractional Integration? , 1999, Review of Economics and Statistics.

[11]  Changpin Li,et al.  Higher order finite difference method for the reaction and anomalous-diffusion equation☆☆☆ , 2014 .

[12]  Fangying Song,et al.  Spectral direction splitting methods for two-dimensional space fractional diffusion equations , 2015, J. Comput. Phys..

[13]  M. Faierman,et al.  Asymptotic formulae for the eigenvalues of a two-parameter ordinary differential equation of the second order , 1972 .

[14]  Boying Wu,et al.  A new numerical method for variable order fractional functional differential equations , 2017, Appl. Math. Lett..

[15]  Chuanju Xu,et al.  Error Analysis of a High Order Method for Time-Fractional Diffusion Equations , 2016, SIAM J. Sci. Comput..

[16]  Esmail Babolian,et al.  Some error estimates for solving Volterra integral equations by using the reproducing kernel method , 2015, J. Comput. Appl. Math..

[17]  F. Z. Geng,et al.  Piecewise shooting reproducing kernel method for linear singularly perturbed boundary value problems , 2016, Appl. Math. Lett..

[18]  Hongguang Sun,et al.  Finite difference Schemes for Variable-Order Time fractional Diffusion equation , 2012, Int. J. Bifurc. Chaos.

[19]  Carlos F.M. Coimbra,et al.  Mechanics with variable‐order differential operators , 2003 .

[20]  Mehdi Dehghan,et al.  Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition , 2017, Comput. Math. Appl..

[21]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[22]  Fazhan Geng,et al.  Solving a nonlinear system of second order boundary value problems , 2007 .

[23]  X. Y. Li,et al.  Error estimation for the reproducing kernel method to solve linear boundary value problems , 2013, J. Comput. Appl. Math..

[24]  Fawang Liu,et al.  Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation , 2009, Appl. Math. Comput..

[25]  Mehdi Dehghan,et al.  Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition , 2016 .

[26]  F. Geng,et al.  A new numerical method for singularly perturbed turning point problems with two boundary layers based on reproducing kernel method , 2017 .

[27]  Fawang Liu,et al.  Numerical techniques for the variable order time fractional diffusion equation , 2012, Appl. Math. Comput..

[28]  Wei Jiang,et al.  An efficient Chebyshev-tau method for solving the space fractional diffusion equations , 2013, Appl. Math. Comput..

[29]  Stefan Samko,et al.  Fractional integration and differentiation of variable order , 1995 .