Responses of trace elements and optical textures of ultra-deep pyrobitumen to hydrothermal alteration

[1]  Zezhang Song,et al.  Dynamic reconstruction of the hydrocarbon generation, accumulation, and evolution history in ultra-deeply-buried strata , 2022, Frontiers in Earth Science.

[2]  N. Zhong,et al.  Texture development of mesophase in reservoir pyrobitumen and the temperature-pressure converting of the gas reservoir in the Chuanzhong Uplift, Southwestern China , 2022, Petroleum Science.

[3]  Wenzhi Zhao,et al.  Hydrothermal activity in ultra-deep strata and its geological significance for deep earth gas exploration: Implications from pyrobitumen in the ediacaran-lower Cambrian Strata, Sichuan Basin , 2022, International Journal of Coal Geology.

[4]  Wenzhi Zhao,et al.  Reservoir solid bitumen-source rock correlation using the trace and rare earth elements–implications for identifying the natural gas source of the Ediacaran-Lower Cambrian reservoirs, central Sichuan Basin , 2021, Marine and Petroleum Geology.

[5]  N. Qiu,et al.  Paleo-oil reservoir pyrolysis and gas release in the yangtze block imply an alternative mechanism for the late permian crisis , 2021, Geoscience Frontiers.

[6]  J. Groff Fluid Evolution During Cretaceous and Eocene Igneous–Hydrothermal Events in the Getchell Trend, Nevada , 2021 .

[7]  Wenzhi Zhao,et al.  The dating and temperature measurement technologies for carbonate minerals and their application in hydrocarbon accumulation research in the paleo-uplift in central Sichuan Basin, SW China , 2021, Petroleum Exploration and Development.

[8]  F. Poitrasson,et al.  Mechanisms and rates of pyrite formation from hydrothermal fluid revealed by iron isotopes , 2021, Geochimica et Cosmochimica Acta.

[9]  Wenxuan Hu,et al.  Hydrocarbon evolution of the over-mature Sinian Dengying reservoir of the Neoproterozoic Sichuan Basin, China: Insights from Re–Os geochronology , 2020 .

[10]  Honghan Chen,et al.  Dating and characterizing primary gas accumulation in Precambrian dolomite reservoirs, Central Sichuan Basin, China: Insights from pyrobitumen Re-Os and dolomite U-Pb geochronology , 2020 .

[11]  Jian-xin Zhao,et al.  Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs , 2019 .

[12]  C. Cai,et al.  Alteration of solid bitumen by hydrothermal heating and thermochemical sulfate reduction in the Ediacaran and Cambrian dolomite reservoirs in the Central Sichuan Basin, SW China , 2019, Precambrian Research.

[13]  G. Lash,et al.  Occurrences and origin of reservoir solid bitumen in Sinian Dengying Formation dolomites of the Sichuan Basin, SW China , 2018, International Journal of Coal Geology.

[14]  Tieguan Wang,et al.  Pyrobitumen in South China: Organic petrology, chemical composition and geological significance , 2018 .

[15]  I. Khan,et al.  The organic petrology of graptolites and maturity assessment of the Wufeng–Longmaxi Formations from Chongqing, China: Insights from reflectance cross-plot analysis , 2017 .

[16]  Wei Xu,et al.  Hydrothermal dolomite reservoir facies in the Sinian Dengying Fm, central Sichuan Basin , 2017 .

[17]  Xiaohong Liu,et al.  Hydrothermal dolomite reservoir in the Precambrian Dengying Formation of central Sichuan Basin, Southwestern China , 2017 .

[18]  Yifan Gu,et al.  Hydrothermal dolomitization in Dengying Formation, Gaoshiti-Moxi area, Sichuan Basin, SW China , 2016 .

[19]  N. Zhong,et al.  Graptolite-derived organic matter in the Wufeng-Longmaxi Formations (Upper Ordovician-Lower Silurian) of southeastern Chongqing, China: Implications for gas shale evaluation , 2016 .

[20]  W. Xie,et al.  Features and origin of natural gas in the Sinian–Cambrian of central Sichuan paleo-uplift, Sichuan Basin, SW China , 2015 .

[21]  Keyu Liu,et al.  Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China: Implications for gas exploration in old cratonic basins , 2015 .

[22]  J. Crelling,et al.  An occurrence of coked bitumen, Raton Formation, Purgatoire River Valley, Colorado, U.S.A. , 2015 .

[23]  Chun Yang,et al.  Geochemistry of the Sinian–Cambrian gas system in the Sichuan Basin, China , 2014 .

[24]  Yigang Xu,et al.  CA-TIMS zircon U–Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province , 2014 .

[25]  C. Zou,et al.  Formation, distribution, resource potential, and discovery of Sinian–Cambrian giant gas field, Sichuan Basin, SW China , 2014 .

[26]  C. Zou,et al.  Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin , 2014 .

[27]  Yangli Yu Discovery and exploration significance of structure-controlled hydrothermal dolomites in the Middle Permian of the central Sichuan Basin , 2012 .

[28]  M. Yardim,et al.  Mesophase AR pitch derived carbon foam: Effect of temperature, pressure and pressure release time , 2006 .

[29]  Z. Guangyou The characteristics of natural gas in Sichuan basin and its sources. , 2006 .

[30]  P. C. Chau,et al.  Injection and stabilization of mesophase pitch in the fabrication of carbon-carbon composites. Part III: Mesophase stabilization at low temperatures and elevated oxidation pressures , 2005 .

[31]  J. Parnell,et al.  Oil migration and bitumen formation in a hydrothermal system, Cuba , 2003 .

[32]  N. Wilson Organic petrology, chemical composition, and reflectance of pyrobitumen from the El Soldado Cu deposit, Chile , 2000 .

[33]  N. Opdyke,et al.  Magnetostratigraphic investigations on an Emeishan basalt section in western Guizhou province, China , 1998 .

[34]  L. Stasiuk The origin of pyrobitumens in upper Devonian Leduc formation gas reservoirs, Alberta, Canada: an optical and EDS study of oil to gas transformation , 1997 .

[35]  G. D. Jackson,et al.  Optical Characteristics of Heat-Affected Bitumens from the Nanisivik Mine, N.W. Baffin Island, Arctic Canada , 1993 .

[36]  T. Yokono,et al.  Formation of carbon microbeads from paraffin/pitch systems under mild pressure and temperature conditions , 1986 .

[37]  H. Marsh,et al.  Carbonization and liquid-crystal (mesophase) development. 9. The co-carbonization of vitrains with Ashland A200 petroleum pitch , 1979 .

[38]  Y. Sanada Utilization of Heavy Oil Carbonization and Carbon Materials , 1978 .

[39]  W. M. Hess,et al.  Microstructure and Morphology of Carbon Blacks , 1976 .

[40]  J. White,et al.  The formation of mesophase microstructures during the pyrolysis of selected coker feedstocks , 1974 .

[41]  K. Fukuda,et al.  Characteristics of meso-carbon microbeads separated from pitch , 1973 .

[42]  H. Marsh Carbonization and liquid-crystal (mesophase) development: Part 1. The significance of the mesophase during carbonization of coking coals , 1973 .

[43]  M. J. Reynolds,et al.  Development of optical anisotropy in vitrains during carbonization , 1973 .

[44]  W. M. Hess,et al.  Microstructure of carbons: a high resolution electron microscopy study , 1972 .

[45]  R. D. Heidenreich,et al.  A test object and criteria for high resolution electron microscopy , 1968 .

[46]  G. H. Taylor,et al.  Formation of Graphitizing Carbons from the Liquid Phase , 1965, Nature.