A combined scalarizing method for multiobjective programming problems

In this paper, a new general scalarization technique for solving multiobjective optimization problems is presented. After studying the properties of this formulation, two problems as special cases of this general formula are considered. It is shown that some well-known methods such as the weighted sum method, the ∊-constraint method, the Benson method, the hybrid method and the elastic ∊-constraint method can be subsumed under these two problems. Then, considering approximate solutions, some relationships between e-(weakly, properly) efficient points of a general (without any convexity assumption) multiobjective optimization problem and ∊-optimal solutions of the introduced scalarized problem are achieved.

[1]  C. Romero Extended lexicographic goal programming: a unifying approach , 2001 .

[2]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[3]  K. Teo,et al.  Optimality conditions for approximate solutions of vector optimization problems , 2011 .

[4]  J. Borwein Proper Efficient Points for Maximizations with Respect to Cones , 1977 .

[5]  P. Loridan ε-solutions in vector minimization problems , 1984 .

[6]  César Gutiérrez,et al.  On Approximate Solutions in Vector Optimization Problems Via Scalarization , 2006, Comput. Optim. Appl..

[7]  Jen-Chwan Liu ϵ-properly efficient solutions to nondifferentiable multiobjective programming problems , 1999 .

[8]  Gabriele Eichfelder,et al.  Scalarizations for adaptively solving multi-objective optimization problems , 2009, Comput. Optim. Appl..

[9]  S. Ruzika,et al.  Approximation Methods in Multiobjective Programming , 2005 .

[10]  Ju Airgen Guddat,et al.  Multiobjective and stochastic optimization based on parametric optimization , 1987 .

[11]  Margaret M. Wiecek,et al.  Exact generation of epsilon-efficient solutions in multiple objective programming , 2007, OR Spectr..

[12]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[13]  Esmaile Khorram,et al.  On approximating weakly/properly efficient solutions in multi-objective programming , 2011, Math. Comput. Model..

[14]  D. J. White,et al.  Epsilon efficiency , 1986 .

[15]  H. P. Benson,et al.  An improved definition of proper efficiency for vector maximization with respect to cones , 1979 .

[16]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[17]  Harold P. Benson,et al.  Hybrid Approach for Solving Multiple-Objective Linear Programs in Outcome Space , 1998 .

[18]  Ching-Lai Hwang,et al.  Multiple Objective Decision Making , 1994 .

[19]  César Gutiérrez,et al.  Optimality Conditions for Metrically Consistent Approximate Solutions in Vector Optimization , 2007 .

[20]  Johannes Jahn,et al.  On the location of antennas for treatment planning in hyperthermia , 2003, OR Spectr..

[21]  J. Dutta,et al.  ON APPROXIMATE MINIMA IN VECTOR OPTIMIZATION , 2001 .

[22]  R. Hartley On Cone-Efficiency, Cone-Convexity and Cone-Compactness , 1978 .

[23]  R. Marler,et al.  The weighted sum method for multi-objective optimization: new insights , 2010 .

[24]  George Mavrotas,et al.  Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems , 2009, Appl. Math. Comput..

[25]  M. Ehrgott,et al.  Improved ε-Constraint Method for Multiobjective Programming , 2008 .

[26]  Kaisa Miettinen,et al.  Global formulation for interactive multiobjective optimization , 2011, OR Spectr..

[27]  Johannes Jahn,et al.  Vector optimization - theory, applications, and extensions , 2004 .

[28]  Eugenia Panaitescu,et al.  Approximate quasi efficient solutions in multiobjective optimization , 2008 .

[29]  Ching-Lai Hwang,et al.  Methods for Multiple Objective Decision Making , 1979 .

[30]  Kaisa Miettinen,et al.  Improving the computational efficiency in a global formulation (GLIDE) for interactive multiobjective optimization , 2011, Annals of Operations Research.

[31]  Xinmin Yang,et al.  Optimality Conditions for Approximate Solutions in Multiobjective Optimization Problems , 2010 .

[32]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[33]  B. A. Ghaznavi-ghosoni,et al.  Scalarization for characterization of approximate strong/weak/proper efficiency in multi-objective optimization , 2013 .

[34]  X. Q. Yang,et al.  On Characterizations of Proper Efficiency for Nonconvex Multiobjective Optimization , 2002, J. Glob. Optim..

[35]  Kathrin Klamroth,et al.  An MCDM approach to portfolio optimization , 2004, Eur. J. Oper. Res..

[36]  中嶋 博 Convex Programming の新しい方法 (開学記念号) , 1966 .

[37]  Shouyang Wang,et al.  ε-approximate solutions in multiobjective optimization , 1998 .

[38]  Ralph E. Steuer,et al.  Multiple criteria decision making combined with finance: A categorized bibliographic study , 2003, Eur. J. Oper. Res..

[39]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .