Femtosecond laser irradiation of dielectric materials containing randomly-arranged nanoparticles

We investigate femtosecond laser irradiation of dielectric materials containing randomly-arranged nanoparticles. For this, numerical modeling is performed based on three different methods: Mie theory, static solution of linear Maxwell's equations and a solution of nonlinear Maxwell's equations together with kinetic equations for free electron excitation/relaxation processes. First two approaches are used to define the static intensity distribution and to analyze the electromagnetic interaction between the nanoparticles. The third method allows us to investigate the complex dynamics of the laser-matter interaction. Multiphoton absorption is shown to be responsible for electron plasma generation in the regions of strong intensity enhancements in the vicinity of nanoparticles. The irradiation of the dielectric material leads to the elongation of nanoplasmas by the near-field enhancement perpendicular to the laser polarization and to their strong interaction resulting in periodic arrangement. Numerical results shed light on such effects as femtosecond laser-induced nanograting formation

[1]  Koji Sugioka,et al.  Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation. , 2013, Optics Express.

[2]  P. Corkum,et al.  Transient nanoplasmonics inside dielectrics , 2007 .

[3]  Y. Shimotsuma,et al.  Self-organized nanogratings in glass irradiated by ultrashort light pulses. , 2003, Physical review letters.

[4]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[5]  Kazuyuki Hirao,et al.  Femtosecond laser-induced microfeatures in glasses and their applications , 2008 .

[6]  T. Itina,et al.  Femtosecond Laser Irradiation of Fused Silica with a Nanometric Inhomogeneity , 2015 .

[7]  J. C. Garland,et al.  Optical properties of a small-particle composite , 1984 .

[8]  Ari Tervonen,et al.  Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application , 2011 .

[9]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[10]  Perry,et al.  Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. , 1996, Physical review. B, Condensed matter.

[11]  Emmanuel Kymakis,et al.  Nanoparticle-based plasmonic organic photovoltaic devices , 2013 .

[12]  A. Panov Impact of interparticle dipole–dipole interactions on optical nonlinearity of nanocomposites , 2013, 1309.2709.

[13]  Y. Yue,et al.  Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications , 2016 .

[14]  L. Keldysh,et al.  IONIZATION IN THE FIELD OF A STRONG ELECTROMAGNETIC WAVE , 1964 .

[15]  Ramki Kalyanaraman,et al.  In silico design of metal-dielectric nanocomposites for solar energy applications , 2007, SPIE NanoScience + Engineering.

[16]  P. Chapuis,et al.  Near-field induction heating of metallic nanoparticles due to infrared magnetic dipole contribution , 2008, 0802.1900.

[17]  J. Siegel,et al.  Rapid assessment of nonlinear optical propagation effects in dielectrics , 2015, Scientific Reports.

[18]  M. Sendova-Vassileva,et al.  Experimental study of interaction of laser radiation with silver nanoparticles in SiO2 matrix. , 2006, Journal of Nanoscience and Nanotechnology.

[19]  Guillaume Petite,et al.  Dynamics of femtosecond laser interactions with dielectrics , 2004 .

[20]  T. Lanier,et al.  Model for Ultrashort Laser-pulse Induced Ionization Dynamics in Transparent Solids , 2014 .

[21]  Kazuyuki Hirao,et al.  Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system , 1998 .

[22]  Peter G. Kazansky,et al.  Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses , 2011 .

[23]  P. Corkum,et al.  Memory in nonlinear ionization of transparent solids. , 2006, Physical review letters.

[24]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[25]  Robert R. Thomson,et al.  Ultrafast Nonlinear Optics , 2013 .

[26]  E. Wright,et al.  Nonlinear optical response of colloidal suspensions. , 2009, Optics express.

[27]  Javier Aizpurua,et al.  Interparticle coupling effects in surface-enhanced Raman scattering , 2001, SPIE BiOS.

[28]  Ya Cheng,et al.  Femtosecond Laser 3D Fabrication in Porous Glass for Micro- and Nanofluidic Applications , 2014, Micromachines.

[29]  M. Obara,et al.  Engineering Au Nanoparticle Arrays on SiO2 Glass by Pulsed UV Laser Irradiation , 2012, Plasmonics.

[30]  P. Schaaf Laser processing of materials : fundamentals, applications and developments , 2010 .

[31]  Stefan Nolte,et al.  Self-organized pattern formation in laser-induced multiphoton ionization in fused silica , 2013 .

[32]  Olivier Saut,et al.  Modeling the Early Ionization of Dielectrics by Ultrashort Laser Pulses , 2010, J. Sci. Comput..

[33]  Koji Sugioka,et al.  Formation of nanogratings in a porous glass immersed in water by femtosecond laser irradiation , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[34]  Peter G. Kazansky,et al.  ``Quill'' writing with ultrashort light pulses in transparent materials , 2007 .

[35]  K. Sugioka,et al.  Ultrafast lasers—reliable tools for advanced materials processing , 2014, Light: Science & Applications.

[36]  S.,et al.  Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media , 1966 .

[37]  M. Green,et al.  Plasmonics for photovoltaic applications , 2010 .

[38]  P. Meynadier,et al.  Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals , 1997 .

[39]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[40]  S. Maier,et al.  Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering. , 2014, Small.

[41]  R. Taylor,et al.  Applications of femtosecond laser induced self‐organized planar nanocracks inside fused silica glass , 2008 .

[42]  I. Manna,et al.  Laser processing of materials , 2003 .

[43]  Nadezhda M. Bulgakova,et al.  Theoretical treatments of ultrashort pulse laser processing of transparent materials: toward understanding the volume nanograting formation and “quill” writing effect , 2013 .

[44]  C. Du,et al.  Effect of near-field coupling on far-field inelastic scattering imaging of gold nanoparticles , 2008, Nanotechnology.

[45]  Andreas Kaiser,et al.  Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses , 2000 .