Tensor network study of the m=12 magnetization plateau in the Shastry-Sutherland model at finite temperature

The two-dimensional infinite projected entangled pair state tensor network is evolved in imaginary time with the full update (FU) algorithm to simulate the Shastry-Sutherland model in a magnetic field at finite temperature directly in the thermodynamic limit. We focus on the phase transition into the $m=\frac{1}{2}$ magnetization plateau, which was observed in experiments on ${\mathrm{SrCu}}_{2}{({\mathrm{BO}}_{3})}_{2}$. For the largest simulated bond dimension, the early evolution in the high-temperature regime is simulated with the simple update (SU) scheme and then, as the correlation length increases, continued with the FU scheme towards the critical regime. We apply a small symmetry-breaking bias field and then extrapolate towards zero bias using a simple scaling theory in the bias field. The combined SU $+$ FU scheme provides an accurate estimate of the critical temperature, even though the results could not be fully converged in the bond dimension in the vicinity of the transition. The critical temperature estimate is improved with a generalized scaling theory that combines two divergent length scales: One due to the bias, and the other due to the finite bond dimension. The obtained results are consistent with the transition being in the universality class of the two-dimensional classical Ising model. The estimated critical temperature is 3.5(2) K, which is well above the temperature 2.1 K used in the experiments.

[1]  A. Honecker,et al.  A quantum magnetic analogue to the critical point of water , 2020, Nature.

[2]  A. Weichselbaum,et al.  Quantum many-body simulations of the two-dimensional Fermi-Hubbard model in ultracold optical lattices , 2020, Physical Review B.

[3]  F. Alet,et al.  Finite-temperature symmetric tensor network for spin-1/2 Heisenberg antiferromagnets on the square lattice , 2020, 2010.07828.

[4]  J. Eisert,et al.  Quantum time crystals with programmable disorder in higher dimensions , 2020, 2004.07267.

[5]  P. Corboz,et al.  Excitations with projected entangled pair states using the corner transfer matrix method , 2020, Physical Review B.

[6]  J. Cirac,et al.  Evaluation of time-dependent correlators after a local quench in iPEPS: hole motion in the t-J model , 2019, SciPost Physics.

[7]  J. Eisert,et al.  Time evolution of many-body localized systems in two spatial dimensions , 2019, Physical Review B.

[8]  A. Honecker,et al.  Thermodynamic properties of the Shastry-Sutherland model throughout the dimer-product phase , 2019, Physical Review Research.

[9]  Piotr Czarnik,et al.  Tensor network simulation of the Kitaev-Heisenberg model at finite temperature , 2019, Physical Review B.

[10]  D. Graf,et al.  Emergent bound states and impurity pairs in chemically doped Shastry-Sutherland system , 2018, Nature Communications.

[11]  A. Weichselbaum,et al.  Thermal tensor renormalization group simulations of square-lattice quantum spin models , 2019, Physical Review B.

[12]  P. Corboz,et al.  Finite correlation length scaling with infinite projected entangled pair states at finite temperature , 2019, Physical Review B.

[13]  I. Niesen,et al.  Competition between intermediate plaquette phases in SrCu2 ( BO3)2 under pressure , 2019, Physical Review B.

[14]  J. Cirac,et al.  Time-dependent study of disordered models with infinite projected entangled pair states , 2018, SciPost Physics.

[15]  P. Corboz,et al.  Time evolution of an infinite projected entangled pair state: An efficient algorithm , 2018, Physical Review B.

[16]  A. Weichselbaum,et al.  Two-temperature scales in the triangular-lattice Heisenberg antiferromagnet , 2018, Physical Review B.

[17]  M. Lewenstein,et al.  Efficient quantum simulation for thermodynamics of infinite-size many-body systems in arbitrary dimensions , 2018, Physical Review B.

[18]  J. Eisert,et al.  Tensor Network Annealing Algorithm for Two-Dimensional Thermal States. , 2018, Physical review letters.

[19]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[20]  A. Lauchli,et al.  Finite Correlation Length Scaling in Lorentz-Invariant Gapless iPEPS Wave Functions , 2018, Physical Review X.

[21]  P. Corboz,et al.  Finite Correlation Length Scaling with Infinite Projected Entangled-Pair States , 2018, Physical Review X.

[22]  L. Cincio,et al.  Precise Extrapolation of the Correlation Function Asymptotics in Uniform Tensor Network States with Application to the Bose-Hubbard and XXZ Models , 2018, Physical Review X.

[23]  Wei Li,et al.  Exponential Thermal Tensor Network Approach for Quantum Lattice Models , 2017, Physical Review X.

[24]  F. Verstraete,et al.  Faster methods for contracting infinite two-dimensional tensor networks , 2017, Physical Review B.

[25]  Shi-Ju Ran,et al.  Thermodynamics of spin-1/2 Kagomé Heisenberg antiferromagnet: algebraic paramagnetic liquid and finite-temperature phase diagram. , 2017, Science bulletin.

[26]  A. Weichselbaum,et al.  Emergent spin-1 trimerized valence bond crystal in the spin-1/2 Heisenberg model on the star lattice , 2015, 1508.03451.

[27]  T. Barthel One-dimensional quantum systems at finite temperatures can be simulated efficiently on classical computers , 2017, 1708.09349.

[28]  J. Chen,et al.  Optimized contraction scheme for tensor-network states , 2017, 1705.08577.

[29]  Benedikt Bruognolo,et al.  Matrix product state techniques for two-dimensional systems at finite temperature , 2017, 1705.05578.

[30]  A. M. Ole's,et al.  Overcoming the sign problem at finite temperature: Quantum tensor network for the orbital eg model on an infinite square lattice , 2017, 1703.03586.

[31]  Shi-Ju Ran,et al.  Fermionic algebraic quantum spin liquid in an octa-kagome frustrated antiferromagnet , 2017, 1705.06006.

[32]  Garnet Kin-Lic Chan,et al.  Stripe order in the underdoped region of the two-dimensional Hubbard model , 2016, Science.

[33]  Hendrik Weimer,et al.  A simple tensor network algorithm for two-dimensional steady states , 2016, Nature Communications.

[34]  M. Batchelor,et al.  Finite-temperature fidelity and von Neumann entropy in the honeycomb spin lattice with quantum Ising interaction , 2016, 1611.10072.

[35]  J Chen,et al.  Gapless Spin-Liquid Ground State in the S=1/2 Kagome Antiferromagnet. , 2016, Physical review letters.

[36]  M. Rams,et al.  Variational tensor network renormalization in imaginary time: Benchmark results in the Hubbard model at finite temperature , 2016, 1607.04016.

[37]  Frank Verstraete,et al.  Gradient methods for variational optimization of projected entangled-pair states , 2016, 1606.09170.

[38]  D. Graf,et al.  Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2 , 2016, Nature Communications.

[39]  Philippe Corboz,et al.  Variational optimization with infinite projected entangled-pair states , 2016, 1605.03006.

[40]  F. Mila,et al.  Pressure dependence of the magnetization plateaus of SrCu 2 (BO 3 )2 , 2016, 1601.00793.

[41]  A. M. Ole's,et al.  Variational tensor network renormalization in imaginary time: Two-dimensional quantum compass model at finite temperature , 2015, 1512.07168.

[42]  P. Corboz Improved energy extrapolation with infinite projected entangled-pair states applied to the two-dimensional Hubbard model , 2015, 1508.04003.

[43]  Hoang Duong Tuan,et al.  Infinite projected entangled pair states algorithm improved: Fast full update and gauge fixing , 2015, 1503.05345.

[44]  Michael Marien,et al.  Excitations and the tangent space of projected entangled-pair states , 2015, Physical Review B.

[45]  Piotr Czarnik,et al.  Variational approach to projected entangled pair states at finite temperature , 2015, 1503.01077.

[46]  Piotr Czarnik,et al.  Projected entangled pair states at finite temperature: Iterative self-consistent bond renormalization for exact imaginary time evolution , 2014, 1411.6778.

[47]  J. Ignacio Cirac,et al.  Approximating Gibbs states of local Hamiltonians efficiently with projected entangled pair states , 2014, 1406.2973.

[48]  Jens Eisert,et al.  Area laws and efficient descriptions of quantum many-body states , 2014, 1411.2995.

[49]  Matthias Troyer,et al.  Competing states in the t-J model: uniform D-wave state versus stripe state. , 2014, Physical review letters.

[50]  Frédéric Mila,et al.  Crystals of bound states in the magnetization plateaus of the Shastry-Sutherland model. , 2014, Physical review letters.

[51]  Piotr Czarnik,et al.  Fermionic projected entangled pair states at finite temperature , 2013, 1311.7272.

[52]  Guifre Vidal,et al.  Scaling of entanglement entropy in the (branching) multiscale entanglement renormalization ansatz , 2013, 1310.8372.

[53]  G. Evenbly,et al.  Real-space decoupling transformation for quantum many-body systems. , 2012, Physical review letters.

[54]  A. Honecker,et al.  Magnetization of SrCu2(BO3)2 in ultrahigh magnetic fields up to 118 T. , 2013, Physical review letters.

[55]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[56]  Bin Xi,et al.  Theory of network contractor dynamics for exploring thermodynamic properties of two-dimensional quantum lattice models , 2013, 1301.6439.

[57]  Philippe Corboz,et al.  Tensor network study of the Shastry-Sutherland model in zero magnetic field , 2012, 1212.2983.

[58]  H. Kageyama,et al.  Incomplete devil's staircase in the magnetization curve of SrCu2(BO3)2. , 2012, Physical review letters.

[59]  L. Cincio,et al.  Characterizing topological order by studying the ground States on an infinite cylinder. , 2012, Physical review letters.

[60]  Takafumi J. Suzuki,et al.  Study of the Shastry Sutherland Model Using Multi-scale Entanglement Renormalization Ansatz , 2012, 1212.1999.

[61]  Lukasz Cincio,et al.  Projected entangled pair states at finite temperature: Imaginary time evolution with ancillas , 2012, 1209.0454.

[62]  K. Schmidt,et al.  Microscopic mechanism for the (1)/(8) magnetization plateau in SrCu 2 (BO 3 ) 2 , 2012, 1208.5379.

[63]  Bin Xi,et al.  Optimized decimation of tensor networks with super-orthogonalization for two-dimensional quantum lattice models , 2012, 1205.5636.

[64]  C. Batista,et al.  Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2 , 2012, Proceedings of the National Academy of Sciences.

[65]  Z. Y. Xie,et al.  Coarse-graining renormalization by higher-order singular value decomposition , 2012, 1201.1144.

[66]  M. Troyer,et al.  Stripes in the two-dimensional t-J model with infinite projected entangled-pair states , 2011, 1104.5463.

[67]  Bin Xi,et al.  Linearized tensor renormalization group algorithm for the calculation of thermodynamic properties of quantum lattice models. , 2010, Physical review letters.

[68]  M. Troyer,et al.  Implementing global Abelian symmetries in projected entangled-pair state algorithms , 2010, 1010.3595.

[69]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[70]  J. Picon,et al.  Unconventional magnetization plateaus in a Shastry-Sutherland spin tube , 2010, 1003.1696.

[71]  F. Verstraete,et al.  Grassmann tensor network states and its renormalization for strongly correlated fermionic and bosonic states , 2010, 1004.2563.

[72]  M. Takigawa,et al.  Novel Ordered Phases in the Orthogonal Dimer Spin System SrCu2(BO3)2 , 2010 .

[73]  Bela Bauer,et al.  Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states , 2009, 0912.0646.

[74]  Guifre Vidal,et al.  Tensor network decompositions in the presence of a global symmetry , 2009, 0907.2994.

[75]  J. Eisert,et al.  Unitary circuits for strongly correlated fermions , 2009, 0905.0669.

[76]  J. Ignacio Cirac,et al.  Fermionic projected entangled pair states , 2009, 0904.4667.

[77]  Guifre Vidal,et al.  Simulation of interacting fermions with entanglement renormalization , 2009, Physical Review A.

[78]  Jens Eisert,et al.  Contraction of fermionic operator circuits and the simulation of strongly correlated fermions , 2009, 0907.3689.

[79]  Philippe Corboz,et al.  Fermionic multiscale entanglement renormalization ansatz , 2009, 0907.3184.

[80]  Roman Orus,et al.  Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction , 2009, 0905.3225.

[81]  Xiao-Gang Wen,et al.  Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions , 2008 .

[82]  S. Capponi,et al.  Effective theory of magnetization plateaux in the Shastry-Sutherland lattice. , 2008, Physical review letters.

[83]  T. Xiang,et al.  Accurate determination of tensor network state of quantum lattice models in two dimensions. , 2008, Physical review letters.

[84]  F. Mila,et al.  Theory of magnetization plateaux in the Shastry-Sutherland model. , 2008, Physical review letters.

[85]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[86]  H. Kageyama,et al.  Field dependence of the quantum ground state in the Shastry-Sutherland system SrCu2 (BO3)2 , 2007, 0712.0926.

[87]  P. Sengupta,et al.  Fractalization drives crystalline states in a frustrated spin system , 2007, Proceedings of the National Academy of Sciences.

[88]  Norbert Schuch,et al.  Entropy scaling and simulability by matrix product states. , 2007, Physical review letters.

[89]  Matthew B Hastings,et al.  Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.

[90]  F. Verstraete,et al.  Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. , 2007, Physical review letters.

[91]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[92]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[93]  F. Verstraete,et al.  Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states , 2006, cond-mat/0611522.

[94]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[95]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[96]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[97]  H. Kageyama,et al.  The -magnetization plateau state in the 2D quantum antiferromagnet SrCu2(BO3)2: spin superstructure, phase transition, and spin dynamics studied by high-field NMR , 2004 .

[98]  A. Gendiar,et al.  Tensor Product Variational Formulation for Quantum Systems , 2004, cond-mat/0401115.

[99]  M. Horvati,et al.  The 1 8-magnetization plateau state in the 2 D quantum antiferromagnet SrCu 2 ð BO 3 Þ 2 : spin superstructure , phase transition , and spin dynamics studied by high-field NMR , 2004 .

[100]  S. Miyahara,et al.  Theory of the orthogonal dimer Heisenberg spin model for SrCu2 (BO3)2 , 2003 .

[101]  F. Mila,et al.  Theory of spin-density profile and lattice distortion in the magnetization plateaus ofSrCu2(BO3)2 , 2003, cond-mat/0302332.

[102]  Grenoble,et al.  Magnetic Superstructure in the Two-Dimensional Quantum Antiferromagnet SrCu2(BO3)2 , 2002, Science.

[103]  M. Sigrist,et al.  Phase diagram of the quadrumerized Shastry-Sutherland model , 2002, cond-mat/0201506.

[104]  N. Kawakami,et al.  Competing Spin-Gap Phases in a Frustrated Quantum Spin System in Two Dimensions , 2001, cond-mat/0103264.

[105]  S. Sachdev,et al.  Quantum phases of the Shastry-Sutherland antiferromagnet: Application to SrCu 2 ( BO 3 ) 2 , 2001, cond-mat/0102222.

[106]  Y. Fukumoto Magnetization Plateaus in the Shastry-Sutherland Model for SrCu2(BO3)2: Results of Fourth-Order Perturbation Expansion with a Low-Density Approximation , 2000, cond-mat/0012396.

[107]  S. Miyahara,et al.  The magnetization plateaus of SrCu2(BO3)2 , 2000 .

[108]  T. Momoi,et al.  Magnetization plateaus of the Shastry-Sutherland model for SrCu_2(BO_3)_2: SDW, supersolid and bound states , 2000, cond-mat/0006020.

[109]  H. Kageyama,et al.  Direct evidence for the localized single-triplet excitations and the dispersive multitriplet excitations in SrCu2(BO3)2. , 2000, Physical review letters.

[110]  Y. Fukumoto,et al.  Magnetization Process in the Shastry-Sutherland System SrCu2(BO3)2. Results of Third-Order Dimer Expansion. , 2000 .

[111]  H. Kageyama,et al.  1/3 Magnetization Plateau in SrCu2(BO3)2--Stripe Order of Excited Triplets , 2000 .

[112]  Kawakami,et al.  Quantum phase transitions in the shastry-sutherland model for SrCu2(BO3)(2) , 2000, Physical review letters.

[113]  T. Momoi,et al.  Magnetization plateaus as insulator-superfluid transitions in quantum spin systems , 1999, cond-mat/9910057.

[114]  H. Kageyama,et al.  Exact Dimer Ground State and Quantized Magnetization Plateaus in the Two-Dimensional Spin System SrCu 2 ( BO 3 ) 2 , 1999 .

[115]  S. Miyahara,et al.  Exact Dimer Ground State of the Two Dimensional Heisenberg Spin System SrCu 2 ( BO 3 ) 2 , 1998, cond-mat/9807075.

[116]  T. Nishino,et al.  Corner Transfer Matrix Renormalization Group Method , 1995, cond-mat/9507087.

[117]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[118]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[119]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[120]  B. Shastry,et al.  Exact ground state of a quantum mechanical antiferromagnet , 1981 .