Radiative transfer modeling in the Earth–Atmosphere system with DART model

Abstract The atmosphere strongly affects satellite measurements of Earth surfaces in the optical domain. Modeling this influence is complex. This is typically the case of the “Earth–Atmosphere” radiative coupling in the presence of Earth surfaces with spatially variable optical properties. In that case, it may be very difficult to couple Earth and cloud-free atmosphere radiative transfer models. This explains why an atmosphere module was input into the Earth radiative transfer (R.T.) model DART (Discrete Anisotropic Radiative Transfer) in order to simulate accurately satellite images of natural and urban Earth surfaces. This paper presents how DART simulates the atmosphere R.T. in the short wave and thermal infrared domains. The atmosphere is divided into 3 zones: bottom atmosphere (BA), mid atmosphere (MA) and high atmosphere (HA). The 3D distribution is arbitrary in BA and horizontally constant with any vertical distribution in MA and HA. The “Earth–Atmosphere” R.T. is modeled in 5 stages. 1) Atmosphere R.T. (i.e., atmosphere thermal emission and/or sun radiation scattering). 2) Earth surface R.T. (i.e., Earth thermal emission and/or atmosphere and direct sun radiation scattering). 3) Atmosphere R.T. (i.e., Earth radiation scattering). 4) Earth surface R.T. (i.e., scattering of downward atmosphere radiation). 5) Simulation of satellite reflectance and/or brightness temperature images. The approach takes into account the earth curvature and the atmosphere non-Beer law behavior in the presence of strongly varying spectral properties. It uses optimally located scattering points for improving atmosphere R.T. accuracy, and it reduces computer time through the use of pre-computed transfer functions that transfer radiation between the different atmosphere levels (BA, MA, HA). Moreover, it can simulate automatically an atmosphere geometry that optimizes the trade-off “Computer time–Accuracy” of simulations. The robustness and accuracy of the DART atmosphere modeling were successfully validated with theoretical cases and with the MODTRAN atmosphere R.T. model.

[1]  Bernhard Mayer,et al.  Atmospheric Chemistry and Physics Technical Note: the Libradtran Software Package for Radiative Transfer Calculations – Description and Examples of Use , 2022 .

[2]  Larry L. Gordley,et al.  BANDPAK: Algorithms for modeling broadband transmission and radiance , 1994 .

[3]  Michael E. Schaepman,et al.  Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution , 2008 .

[4]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[5]  S. R. Drayson Rapid computation of the Voigt profile , 1976 .

[6]  G. Plass,et al.  Matrix operator theory of radiative transfer. 1: rayleigh scattering. , 1973, Applied optics.

[7]  Gail P. Anderson,et al.  MODTRAN4 radiative transfer modeling for atmospheric correction , 1999, Optics & Photonics.

[8]  W. Verhoef,et al.  Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models , 2011 .

[9]  J. Hansen Multiple Scattering of Polarized Light in Planetary Atmospheres Part II. Sunlight Reflected by Terrestrial Water Clouds , 1971 .

[10]  A. T. Young Revised depolarization corrections for atmospheric extinction. , 1980, Applied optics.

[11]  Y. Kaufman,et al.  Contrast reduction by the atmosphere and retrieval of nonuniform surface reflectance. , 1982, Applied optics.

[12]  Jean-Philippe Gastellu-Etchegorry,et al.  Thermal infrared radiative transfer within three-dimensional vegetation covers , 2003 .

[13]  A. Lyapustin,et al.  Radiative transfer code SHARM for atmospheric and terrestrial applications. , 2005, Applied optics.

[14]  Sylvie Duthoit,et al.  Assessing the effects of the clumping phenomenon on BRDF of a maize crop based on 3D numerical scenes using DART model , 2008 .

[15]  C. E. Siewert,et al.  The FN method for radiative transfer models that include polarization effects , 1989 .

[16]  J. Gastellu-Etchegorry 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes , 2008 .

[17]  Jean-Luc Widlowski,et al.  The RAMI On-line Model Checker (ROMC): A web-based benchmarking facility for canopy reflectance models , 2008 .

[18]  J. Timmermans,et al.  Coupling optical and thermal directional radiative transfer to biophysical processes in vegetated canopies , 2011 .

[19]  E. Zege,et al.  Multicomponent approach to light propagation in clouds and mists. , 1993, Applied optics.

[20]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[21]  Q. Fu,et al.  Parameterization of the Radiative Properties of Cirrus Clouds , 1993 .

[22]  C. N. Adams Solutions of the equations of radiative transfer by an invariant imbedding approach , 1970 .

[23]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.

[24]  Emmanuel Martin DART : MODÈLE 3D MULTISPECTRAL ET INVERSION D'IMAGES OPTIQUE DE SATELLITE - APPLICATION AUX COUVERTS FORESTIERS - , 2006 .

[25]  Y. Kaufman,et al.  Non-Lambertian Effects on Remote Sensing of Surface Reflectance and Vegetation Index , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Klaus Pfeilsticker,et al.  The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of Jacobians and 3D features , 2011 .

[27]  Didier Tanré,et al.  A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols , 2007 .

[28]  José A. Sobrino,et al.  Evaluation of the DART 3D model in the thermal domain using satellite/airborne imagery and ground-based measurements , 2011 .

[29]  A. Chedin,et al.  A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas , 1981 .

[30]  Catherine Gautier,et al.  SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere. , 1998 .

[31]  P. Edwards,et al.  GENLN2: A general line-by-line atmospheric transmittance and radiance model. Version 3.0: Description and users guide , 1992 .

[32]  R. Bird,et al.  Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres , 1986 .

[33]  Ferran Gascon Modélisation physique d'images de télédétection optique , 2001 .

[34]  Jinxue Wang,et al.  FASCODE: An Update and Applications in Atmospheric Remote Sensing , 1994 .

[35]  G. Kattawar,et al.  Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. II. The hybrid matrix operator--Monte Carlo method. , 2008, Applied optics.

[36]  J. Gastellu-Etchegorry,et al.  A simple anisotropic reflectance model for homogeneous multilayer canopies , 1996 .

[37]  Alexander Berk,et al.  MODTRAN: a moderate resolution model for LOWTRAN. Technical report, 12 May 1986-11 May 1987 , 1987 .

[38]  A. Bucholtz,et al.  Rayleigh-scattering calculations for the terrestrial atmosphere. , 1995, Applied optics.

[39]  Larry L. Gordley,et al.  Linepak: Algorithms for modeling spectral transmittance and radiance , 1994 .

[40]  A. Kokhanovsky,et al.  SCIATRAN 2.0 – A new radiative transfer model for geophysical applications in the 175–2400 nm spectral region , 2004 .

[41]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .

[42]  C. Proisy,et al.  The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests , 2010 .

[43]  K. Evans The Spherical Harmonics Discrete Ordinate Method for Three-Dimensional Atmospheric Radiative Transfer , 1998 .

[44]  Pablo J. Zarco-Tejada,et al.  Discriminating irrigated and rainfed olive orchards with thermal ASTER imagery and DART 3D simulation. , 2009 .

[45]  D. C. Robertson,et al.  MODTRAN: A Moderate Resolution Model for LOWTRAN , 1987 .

[46]  J. Key,et al.  Tools for Atmospheric Radiative Transfer: Streamer and FluxNet. Revised , 1998 .

[47]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[48]  J. Dufresne,et al.  A boundary-based net-exchange Monte Carlo method for absorbing and scattering thick media , 2005, 1902.09966.

[49]  Alice Belot Simulation des échanges d'énergie et de masse d'un couvert végétal : développement et validation d'un modèle quasi 3D, DART-EB , 2007 .

[50]  Jinxue Wang,et al.  Fast Atmospheric Signature CODE (FASCODE): an update and applications in atmospheric remote sensing , 1994, Optics & Photonics.

[51]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[52]  W. Verhoef,et al.  Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models , 2003 .

[53]  Jean-Philippe Gastellu-Etchegorry,et al.  A model-based performance test for forest classifiers on remote-sensing imagery , 2009 .