Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics. II. Extended formulation and numerical analysis

The time-dependent restricted-active-space self-consistent-field (TD-RASSCF) method is formulated based on the TD variational principle. In analogy with the configuration-interaction singles (CIS), singles-and-doubles (CISD), singles-doubles-and-triples (CISDT) methods in quantum chemistry, the TD-RASSCF-S, -SD, and -SDT methods are introduced as extensions of the TD-RASSCF dou- bles (-D) method [Phys. Rev. A 87, 062511 (2013)]. Based on an analysis of the numerical cost and test calculations for one-dimensional (1D) models of atomic helium, beryllium, and carbon, it is shown that the TD-RASSCF-S and -D methods are computationally feasible for systems with many electrons and more accurate than the TD Hartree-Fock (TDHF) and TDCIS methods. In addition to the discussion of methodology, an analysis of electron dynamics in the high-order harmonic generation (HHG) process is presented. For the 1D beryllium atom, a state-resolved analysis of the HHG spectrum based on the time-independent HF orbitals shows that while only single-orbital excitations are needed in the region below the cutoff, single- and double-orbital excitations are es- sential beyond, where accordingly the single-active-electron (SAE) approximation and the TDCIS method break down. On the other hand, the TD-RASSCF-S and -D methods accurately describe the multi-orbital excitation processes throughout the entire region of the HHG spectrum. For the 1D carbon atom, our calculations show that multi-orbital excitations are essential in the HHG process even below the cutoff. Hence, in this test system a very accurate treatment of electron correlation is required. The TD-RASSCF-S and -D approaches meet this demand, while the SAE approximation and the TDCIS method are inadequate.

[1]  Herman Jaramillo,et al.  Wave Mechanics: , 2018, Nature.

[2]  W. Marsden I and J , 2012 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[5]  李幼升,et al.  Ph , 1989 .