Visible to near-infrared optical properties of pure synthetic olivine across the olivine solid solution
暂无分享,去创建一个
M. Darby Dyar | Carle M. Pieters | Janice L. Bishop | Melissa D. Lane | Takahiro Hiroi | Rachel L. Klima | Jessica M. Sunshine | Peter Jonas Isaacson | T. Hiroi | C. Pieters | J. Bishop | M. Dyar | M. Lane | J. Sunshine | R. Klima | P. Isaacson | L. Cheek | L. C. Cheek
[1] Roger G. Burns,et al. Crystal field spectra and evidence of cation ordering in olivine minerals , 1970 .
[2] Roger G. Burns,et al. Mineralogical applications of crystal field theory , 1970 .
[3] F. Huggins,et al. Polarized absorption spectra of single crystals of lunar pyroxenes and olivines , 1972 .
[4] R. Burns. The Polarized Spectra of Iron in Silicates: Olivine. A Discussion of Neglected Contributions from Fe2+ Ions in M(1) Sites , 1974 .
[5] W. Runciman,et al. The Polarized Spectra of Iron in Silicates: II. Olivine: A Reply , 1974 .
[6] R. Burns. On the occurrence and stability of divalent chromium in olivines included in diamonds , 1975 .
[7] D. Bish. Cation ordering in synthetic and natural Ni–Mg olivine , 1981 .
[8] A. Tarantola,et al. Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .
[9] C. M. Pieters,et al. Strength of mineral absorption features in the transmitted component of near-infrared reflected light - First results from RELAB. [spectrogoniometer for planetary and lunar surface composition experiments] , 1983 .
[10] W. Ridley,et al. Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications , 1987 .
[11] Carle M. Pieters,et al. Deconvolution of mineral absorption bands: An improved approach , 1990 .
[12] D. Boström,et al. POLARIZED ELECTRONIC ABSORPTION-SPECTRA AND NI-MG PARTITIONING IN OLIVINES (MG1-XNIX)2[SIO4] , 1990 .
[13] T. Hiroi,et al. Crystal-field theory calculations for Fe2+ Ions in bronzite, augite, and olivine , 1992 .
[14] Carle M. Pieters,et al. Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model , 1993 .
[15] T. Hiroi. Grain Sizes and Mineral Compositions of Surface Regoliths of Vesta-like Asteroids , 1995 .
[16] E. Cloutis. Manganese-rich olivines: Identification from spectral reflectance properties , 1997 .
[17] Paul G. Lucey,et al. Model near‐infrared optical constants of olivine and pyroxene as a function of iron content , 1998 .
[18] Carle M. Pieters,et al. Determining the composition of olivine from reflectance spectroscopy , 1998 .
[19] T. Hiroi,et al. Importance of space weathering simulation products in compositional modeling of asteroids: 349 Dembowska and 446 Aeternitas as examples , 2001 .
[20] A. Tsuchiyama,et al. Compositional dependence of infrared absorption spectra of crystalline silicate: II. Natural and synthetic olivines , 2003 .
[21] Carle M. Pieters,et al. RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility , 2004 .
[22] A. Fransolet,et al. Electronic absorption spectra of phosphate minerals with olivine-type structures I. Members of the triphylite-lithiophilite series, M1[6]LiM2[6](Fex2+Mn1-x2+)[PO4] , 2006 .
[23] L. Taylor,et al. Using the modified Gaussian model to extract quantitative data from lunar soils , 2006 .
[24] A. Hofmeister,et al. Evidence for kinks in structural and thermodynamic properties across the forsterite–fayalite binary from thin-film IR absorption spectra , 2007 .
[25] Devn L. BIsu. Cation ordering in synthetic and natural Ni-Mg olivine , 2007 .
[26] M. Darby Dyar,et al. Spectroscopy of synthetic Mg‐Fe pyroxenes I: Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared , 2007 .
[27] A. Tsuchiyama,et al. Compositional dependence of infrared absorption spectra of crystalline silicates - III. Melilite solid solution , 2007 .
[28] J. Sunshine,et al. Olivine‐dominated asteroids and meteorites: Distinguishing nebular and igneous histories , 2007 .
[29] F. Hawthorne,et al. High-temperature cation ordering in olivine: an in situ Mössbauer study of synthetic (Mg0.55Fe0.45)2 SiO4 , 2008 .
[30] T. Hiroi,et al. Spectroscopic characteristics of synthetic olivine: An integrated multi-wavelength and multi-technique approach , 2009 .
[31] H. McSween,et al. Petrologic insights from the spectra of the unbrecciated eucrites: Implications for Vesta and basaltic asteroids , 2010 .
[32] A. Speck,et al. Infrared laboratory absorbance spectra of olivine: using classical dispersion analysis to extract peak parameters , 2010 .
[33] C. Pieters,et al. Deconvolution of lunar olivine reflectance spectra: Implications for remote compositional assessment , 2010 .
[34] Patrick Pinet,et al. A new systematic approach using the Modified Gaussian Model: Insight for the characterization of chemical composition of olivines, pyroxenes and olivine-pyroxene mixtures , 2011 .
[35] John F. Mustard,et al. Remote compositional analysis of lunar olivine‐rich lithologies with Moon Mineralogy Mapper (M3) spectra , 2011 .
[36] M. Lane,et al. Spectral evidence of volcanic cryptodomes on the northern plains of Mars , 2011 .
[37] F. Marchis,et al. Spectral properties of (854) Frostia, (1333) Cevenola and (3623) Chaplin , 2011 .
[38] T. Hiroi,et al. Midinfrared spectroscopy of synthetic olivines: Thermal emission, specular and diffuse reflectance, and attenuated total reflectance studies of forsterite to fayalite , 2011 .
[39] A. B. Sarbadhikari,et al. The lunar rock and mineral characterization consortium: Deconstruction and integrated mineralogical, petrologic, and spectroscopic analyses of mare basalts , 2011 .
[40] M. Taran,et al. Fe2+, Mg-distribution among non-equivalent structural sites M1 and M2 in natural olivines: an optical spectroscopy study , 2013, Physics and Chemistry of Minerals.
[41] Claudia Biermann,et al. Mineralogical Applications Of Crystal Field Theory , 2016 .