Pre- and post-exploitation variations in hydrothermal activity in Los Humeros geothermal field, Mexico

[1]  R. Farvolden,et al.  Studies of isotopic hydrology of the basin of Mexico and vicinity: annotated bibliography and interpretation , 1997 .

[2]  V. Sisson,et al.  Geochemistry of boron and its implications for crustal and mantle processes , 1996 .

[3]  M. Arnold,et al.  The δ34S composition of sulfates and sulfides at the Los Humeros geothermal system, Mexico and their application to physicochemical fluid evolution , 1996 .

[4]  F. Huertas,et al.  Modelling of potassium exchange in a natural, polyionic montmorillonite under hydrothermal conditions , 1995 .

[5]  S. Simmons,et al.  Origins of calcite in a boiling geothermal system , 1994 .

[6]  R. M. P. Ledesma,et al.  Exploracion geotermica utilizando imagenes de satelite en Los Humeros, Puebla, Mexico , 1993, Geofísica Internacional.

[7]  S. Flexser Hydrothermal alteration and past and present thermal regimes in the western moat of Long Valley caldera , 1991 .

[8]  A. Truesdell Origins of acid fluids in geothermal reservoirs , 1991 .

[9]  A. Reyes Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment , 1990 .

[10]  G. Woldegabriel Hydrothermal alteration in the Valles caldera ring fracture zone and core hole VC-1: evidence for multiple hydrothermal systems , 1990 .

[11]  L. Quijano,et al.  Hydrothermal alteration at Los Humeros, Puebla, geothermal field; III, Water-rock interaction , 1989 .

[12]  W. Giggenbach Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators , 1988 .

[13]  R. Henneberger,et al.  Hydrothermal alteration and evolution of the Ohakuri hydrothermal system, Taupo Volcanic zone, New Zealand , 1988 .

[14]  J. A. Kittrick,et al.  The stability of illite/smectite during diagenesis: An experimental study , 1987 .

[15]  M. Arnold,et al.  Le système hydrothermal actuel de Los Humeros (Mexique): Etat du système SO−−4—SH2 à 300°C, origine du soufre et phénomènes d'oxydation associés à l'ébullition du fluide ascendant , 1987 .

[16]  E. Roedder,et al.  Fluid inclusion from drill hole DW-5, Hohi geothermal area, Japan: Evidence of boiling and procedure for estimating CO2 content , 1986 .

[17]  R. Henley,et al.  The importance of CO 2 on freezing point measurements of fluid inclusions; evidence from active geothermal systems and implications for epithermal ore deposition , 1985 .

[18]  G. Mahood Eruption Rates and Compositional Trends at Los Humeros Volcanic Center , 1984 .

[19]  Alan E. Williams,et al.  Calc-silicate mineralization in active geothermal systems , 1984 .

[20]  P. Browne Hydrothermal Alteration in Active Geothermal Fields , 1978 .

[21]  H. Ohmoto Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits , 1972 .

[22]  A. J. Ellis,et al.  The Ohaki-Broadlands hydrothermal area, New Zealand; mineralogy and related geochemistry , 1970 .

[23]  A. Steiner Clay Minerals in Hydrothermally Altered Rocks at Wairakei, New Zealand , 1968 .

[24]  L. Anovitz,et al.  Boron: mineralogy, petrology and geochemistry , 1996 .

[25]  F. D'amore,et al.  Origin and transport of chloride in superheated geothermal steam , 1989 .

[26]  P. Browne,et al.  Hydrothermal alteration and fluid inclusion geothermometry of los humeros geothermal field, Mexico , 1989 .

[27]  F. M. Bracamontes,et al.  Evidencias geoquimicas del fenomeno de ebullicion en el campo de los humeros , 1989 .

[28]  V. Garduño-Monroy,et al.  The shallow structure of Los Humeros and Las Derrumbadas geothermal fields, Mexico , 1987 .

[29]  W. Giggenbach,et al.  Isotopic and chemical composition of parbati valley geothermal discharges, North-West Himalaya, India , 1983 .

[30]  A. J. Ellis,et al.  Chemistry and Geothermal Systems , 1977 .