Reversible aqueous zinc/manganese oxide energy storage from conversion reactions

[1]  J. Gim,et al.  Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode , 2015 .

[2]  Boeun Lee,et al.  Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. , 2015, Chemical Communications.

[3]  Joseph Paul Baboo,et al.  Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System , 2015 .

[4]  F. La Mantia,et al.  An aqueous zinc-ion battery based on copper hexacyanoferrate. , 2015, ChemSusChem.

[5]  Ahmad Azmin Mohamad,et al.  Advances of aqueous rechargeable lithium-ion battery: A review , 2015 .

[6]  Xufeng Zhou,et al.  Towards High‐Voltage Aqueous Metal‐Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System , 2015 .

[7]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[8]  C. Yoon,et al.  Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide , 2014, Scientific Reports.

[9]  Xufeng Zhou,et al.  Aqueous batteries based on mixed monovalence metal ions: a new battery family. , 2014, ChemSusChem.

[10]  Feiyu Kang,et al.  Preparation and Characterization of MnO2/acid-treated CNT Nanocomposites for Energy Storage with Zinc Ions , 2014 .

[11]  D. Steingart,et al.  A Manganese-Doped Barium Carbonate Cathode for Alkaline Batteries , 2014 .

[12]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[13]  Jun Liu,et al.  Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid , 2013 .

[14]  F. Kang,et al.  Investigation on Zinc Ion Storage in Alpha Manganese Dioxide for Zinc Ion Battery by Electrochemical Impedance Spectrum , 2013 .

[15]  Yi Cui,et al.  A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage , 2012, Nature Communications.

[16]  Jian Jiang,et al.  Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage , 2012, Advanced materials.

[17]  Feiyu Kang,et al.  Energetic zinc ion chemistry: the rechargeable zinc ion battery. , 2012, Angewandte Chemie.

[18]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[19]  D. Zhao,et al.  Carbon Materials for Chemical Capacitive Energy Storage , 2011, Advanced materials.

[20]  Liquan Chen,et al.  Investigation on porous MnO microsphere anode for lithium ion batteries , 2011 .

[21]  John B Goodenough,et al.  Aqueous cathode for next-generation alkali-ion batteries. , 2011, Journal of the American Chemical Society.

[22]  P. He,et al.  Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. , 2010, Nature chemistry.

[23]  Hyun-Wook Lee,et al.  Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. , 2010, Nano letters.

[24]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[25]  Hongda Du,et al.  Reversible Insertion Properties of Zinc Ion into Manganese Dioxide and Its Application for Energy Storage , 2009 .

[26]  K. C. Divya,et al.  Battery Energy Storage Technology for power systems-An overview , 2009 .

[27]  Xiqian Yu,et al.  Overpotential and electrochemical impedance analysis on Cr2O3 thin film and powder electrode in rechargeable lithium batteries , 2008 .

[28]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[29]  M. Armand,et al.  Building better batteries , 2008, Nature.

[30]  Palani Balaya,et al.  Enhanced Potential of Amorphous Electrode Materials: Case Study of RuO2 , 2008 .

[31]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[32]  Jiayan Luo,et al.  Aqueous Lithium-ion Battery LiTi2(PO4)3/LiMn2O4 with High Power and Energy Densities as well as Superior Cycling Stability , 2007 .

[33]  Wei Zhang,et al.  Single-crystal α-MnO2 nanorods: synthesis and electrochemical properties , 2007 .

[34]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[35]  Jun Chen,et al.  High‐Power Alkaline Zn–MnO2 Batteries Using γ‐MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder , 2005 .

[36]  Deyang Qu,et al.  Studies of the activated carbons used in double-layer supercapacitors , 2002 .

[37]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[38]  Joachim Köhler,et al.  LiV3O8: characterization as anode material for an aqueous rechargeable Li-ion battery system , 2000 .

[39]  J. Dahn,et al.  Rechargeable Lithium Batteries with Aqueous Electrolytes , 1994, Science.

[40]  C. Lévy‐Clément,et al.  Rechargeable alkaline manganese dioxide batteries. 1; In situ x-ray diffraction investigation of the H sup + /. gamma. -MnO sub 2 (EMD-type) insertion system , 1992 .