Probing the qudit depolarizing channel

For the quantum depolarizing channel with any finite dimension, we compare three schemes for channel identification: unentangled probes, probes maximally entangled with an external ancilla, and maximally entangled probe pairs. This comparison includes cases where the ancilla is itself depolarizing and where the probe is circulated back through the channel before measurement. Compared on the basis of (quantum Fisher) information gained per channel use, we find broadly that entanglement with an ancilla dominates the other two schemes, but only if entanglement is cheap relative to the cost per channel use and only if the external ancilla is well shielded from depolarization. We arrive at these results by a relatively simple analytical means. A separate, more complicated analysis for partially entangled probes shows for the qudit depolarizing channel that any amount of probe entanglement is advantageous and that the greatest advantage comes with maximal entanglement.

[1]  J. Watrous,et al.  All entangled states are useful for channel discrimination. , 2009, Physical Review Letters.

[2]  Michael R. Frey,et al.  Score operators of a qubit with applications , 2010, Quantum Inf. Process..

[3]  Giulio Chiribella,et al.  Memory effects in quantum channel discrimination. , 2008, Physical review letters.

[4]  Michael R. Frey,et al.  Quantum Fisher information and the qudit depolarization channel , 2009, Defense + Commercial Sensing.

[5]  P. Algoet,et al.  ONE-TO-ONE PARAMETRIZATION OF QUANTUM CHANNELS , 1999 .

[6]  Manuel A. Ballester Estimation of unitary quantum operations , 2004 .

[7]  Depolarization channels with zero-bandwidth noises , 2004, quant-ph/0407166.

[8]  Hiroshi Imai,et al.  Quantum parameter estimation of a generalized Pauli channel , 2003 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[11]  S. Boixo,et al.  Operational interpretation for global multipartite entanglement. , 2007, Physical review letters.

[12]  E. Bagan,et al.  Estimation of quantum finite mixtures , 2009, 0910.1525.

[13]  G. D’Ariano,et al.  Theoretical framework for quantum networks , 2009, 0904.4483.

[14]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[15]  Akio Fujiwara,et al.  Estimation of a generalized amplitude-damping channel , 2004 .

[16]  Masashi Ban,et al.  Optimal parameter estimation of a depolarizing channel , 2002 .

[17]  Luo Shun-Long,et al.  Direct approach to quantum extensions of Fisher information , 2007 .

[18]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[19]  David Daems Entanglement-enhanced transmission of classical information in Pauli channels with memory: Exact solution , 2007 .

[20]  W. Marsden I and J , 2012 .

[21]  Shapiro,et al.  Quantum phase measurement: A system-theory perspective. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[22]  Akio Fujiwara,et al.  Quantum channel identification problem , 2001 .

[23]  C. King The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.

[24]  H. Rezig,et al.  Stop Conditions Of BB84 Protocol Via A Depolarizing Channel (Quantum Cryptography) , 2007 .

[25]  C. W. Helstrom,et al.  Minimum mean-squared error of estimates in quantum statistics , 1967 .

[26]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[27]  Laura E. Coffey,et al.  CORRELATION IDENTIFICATION IN BIPARTITE PAULI CHANNELS , 2010 .