Virtual prototyping simulation for electrostatically suspended rotor micro gyroscope initial levitation

We use virtual prototyping technique to develop a 3D model for electrostatically suspended rotor micro gyroscope system according to its actual mechanical structure and material properties. System level dynamic simulation results obtained from the established virtual prototyping model provide necessary reference and guidance for micro gyroscope system control. Various PID control methods used to realize rotor initial levitation with different control parameters are evaluated and validated by the analytical model before application. The output motion characteristic curves including force, velocity and displacement of rotor are analyzed. Based on simulation results, we find suitable strategy to realize rotor levitation and obtain superior motion performance. The displacement of rotor in Z direction measured in real working environment shows that the PID control method verified by the virtual prototyping simulation is workable. Rapid initial levitation of rotor provides prerequisite for the follow-up rotating and torque exerting control.