Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees

Let G be an n -node and m -edge positively real-weighted undirected graph. For any given integer $$f \ge 1$$ f ≥ 1 , we study the problem of designing a sparse f -edge-fault-tolerant ( f -EFT) $$\sigma $$ σ -approximate single-source shortest-path tree ( $$\sigma $$ σ -ASPT), namely a subgraph of G having as few edges as possible and which, following the failure of a set F of at most f edges in G , contains paths from a fixed source that are stretched by a factor of at most $$\sigma $$ σ . To this respect, we provide an algorithm that efficiently computes an f -EFT $$(2|F|+1)$$ ( 2 | F | + 1 ) -ASPT of size O ( fn ). Our structure improves on a previous related construction designed for unweighted graphs, having the same size but guaranteeing a larger stretch factor of $$3(f+1)$$ 3 ( f + 1 ) , plus an additive term of $$(f+1) \log n$$ ( f + 1 ) log n . Then, we show how to convert our structure into an efficient f -EFT single-source distance oracle, that can be built in $$O(f m\, \alpha (m,n)+fn \log ^3 n)$$ O ( f m α ( m , n ) + f n log 3 n ) time, has size $$O(fn \log ^2 n)$$ O ( f n log 2 n ) , and in $$O(|F|^2 \log ^2 n)$$ O ( | F | 2 log 2 n ) time is able to report a $$(2|F|+1)$$ ( 2 | F | + 1 ) -approximate distance from the source to any node in $$G-F$$ G - F . Moreover, our oracle can return a corresponding approximate path in the same amount of time plus the path’s size. The oracle is obtained by tackling another fundamental problem, namely that of updating a minimum spanning forest (MSF) of G following a batch of k simultaneous modification (i.e., edge insertions, deletions and weight changes). For this problem, we build in $$O(m \log ^3 n)$$ O ( m log 3 n ) time an oracle of size $$O(m \log ^2 n)$$ O ( m log 2 n ) , that reports in $$O(k^2 \log ^2 n)$$ O ( k 2 log 2 n ) time the (at most 2 k ) edges either exiting from or entering into the MSF. Finally, for any integer $$k \ge 1$$ k ≥ 1 , we complement all our results with a lower bound of $$\Omega \left( n^{1+\frac{1}{k}}\right) $$ Ω n 1 + 1 k to the size of any f -EFT $$\sigma $$ σ -ASPT with $$f \ge \log n$$ f ≥ log n and $$\sigma < \frac{3k+1}{k+1}$$ σ < 3 k + 1 k + 1 , that holds if the Erdős’ girth conjecture is true.

[1]  C. Jordan Sur les assemblages de lignes. , 1869 .

[2]  David R. Karger,et al.  A nearly optimal oracle for avoiding failed vertices and edges , 2009, STOC '09.

[3]  Liam Roditty,et al.  Fault-Tolerant Subgraph for Single-Source Reachability: General and Optimal , 2018, SIAM J. Comput..

[4]  Seth Pettie,et al.  A Linear-Size Logarithmic Stretch Path-Reporting Distance Oracle for General Graphs , 2015, SODA.

[5]  Merav Parter,et al.  Dual Failure Resilient BFS Structure , 2015, PODC.

[6]  Ran Duan,et al.  Dual-failure distance and connectivity oracles , 2009, SODA.

[7]  Shiri Chechik,et al.  Approximate Distance Oracle with Constant Query Time , 2013, ArXiv.

[8]  David Peleg,et al.  Fault tolerant additive and (μ, α)-spanners , 2015, Theor. Comput. Sci..

[9]  Mikkel Thorup,et al.  Maintaining information in fully dynamic trees with top trees , 2003, TALG.

[10]  Giuseppe F. Italiano,et al.  On Resilient Graph Spanners , 2015, Algorithmica.

[11]  Panagiotis Charalampopoulos,et al.  Exact Distance Oracles for Planar Graphs with Failing Vertices , 2018, SODA.

[12]  David Eppstein,et al.  Sparsification—a technique for speeding up dynamic graph algorithms , 1997, JACM.

[13]  Shyamal Patel,et al.  A Trivial Yet Optimal Solution to Vertex Fault Tolerant Spanners , 2018, PODC.

[14]  Shiri Chechik,et al.  New Additive Spanners , 2013, SODA.

[15]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.

[16]  Bernard Chazelle,et al.  A minimum spanning tree algorithm with inverse-Ackermann type complexity , 2000, JACM.

[17]  Stephen G. Kobourov,et al.  Graph Spanners: A Tutorial Review , 2020, Comput. Sci. Rev..

[18]  David Peleg,et al.  Sparse Fault-Tolerant BFS Structures , 2016, ACM Trans. Algorithms.

[19]  David Peleg,et al.  Fault-Tolerant Approximate BFS Structures , 2018, ACM Trans. Algorithms.

[20]  Surender Baswana,et al.  Approximate Shortest Paths Avoiding a Failed Vertex: Near Optimal Data Structures for Undirected Unweighted Graphs , 2012, Algorithmica.

[21]  Michael Langberg,et al.  f-Sensitivity Distance Oracles and Routing Schemes , 2010, Algorithmica.

[22]  Merav Parter Vertex fault tolerant additive spanners , 2015, Distributed Computing.

[23]  Enrico Nardelli,et al.  Swapping a Failing Edge of a Single Source Shortest Paths Tree Is Good and Fast , 2002, Algorithmica.

[24]  Fabrizio Grandoni,et al.  Improved Purely Additive Fault-Tolerant Spanners , 2015, ESA.

[25]  David Eppstein Offline Algorithms for Dynamic Minimum Spanning Tree Problems , 1994, J. Algorithms.

[26]  Torben Hagerup Simpler and Faster Dictionaries on the AC0 RAM , 1998, ICALP.

[27]  Mattia D'Emidio,et al.  Path-Fault-Tolerant Approximate Shortest-Path Trees , 2015, SIROCCO.

[28]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[29]  Mikkel Thorup,et al.  Approximate distance oracles , 2005, J. ACM.

[30]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[31]  Monika Henzinger,et al.  Maintaining Minimum Spanning Forests in Dynamic Graphs , 2001, SIAM J. Comput..

[32]  Stefano Leucci,et al.  Fault-Tolerant Approximate Shortest-Path Trees , 2017, Algorithmica.

[33]  Kurt Mehlhorn,et al.  Sequential and Parallel Algorithms and Data Structures: The Basic Toolbox , 2019 .

[34]  Kurt Mehlhorn,et al.  Additive spanners and (α, β)-spanners , 2010, TALG.

[35]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..