Stochastic Schrödinger equations

A derivation of Belavkin's stochastic Schrodinger equations is given using quantum filtering theory. We study an open system in contact with its environment, the electromagnetic field. Continuous observation of the field yields information on the system: it is possible to keep track in real time of the best estimate of the system's quantum state given the observations made. This estimate satisfies a stochastic Schrodinger equation, which can be derived from the quantum stochastic differential equation for the interaction picture evolution of system and field together. Throughout the paper we focus on the basic example of resonance fluorescence.

[1]  Jun Tomiyama,et al.  ON THE PROJECTION OF NORM ONE IN W*-ALGEBRAS, III , 1957 .

[2]  B. Kümmerer Markov dilations on W∗-algebras , 1985 .

[3]  Richard V. Kadison,et al.  Fundamentals of the Theory of Operator Algebras. Volume IV , 1998 .

[4]  J. Valle,et al.  Neutrino mass and baryon-number nonconservation in superstring models. , 1986, Physical review. D, Particles and fields.

[5]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[6]  M. D. Srinivas,et al.  Photon Counting Probabilities in Quantum Optics , 1981 .

[7]  Gardiner,et al.  Wave-function quantum stochastic differential equations and quantum-jump simulation methods. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[8]  Singh,et al.  Photoelectron waiting times and atomic state reduction in resonance fluorescence. , 1989, Physical review. A, General physics.

[9]  M. Sentís Quantum theory of open systems , 2002 .

[10]  Alain Guichardet,et al.  Symmetric Hilbert spaces and related topics , 1972 .

[11]  Burkhard Kümmerer,et al.  Quantum Markov Processes , 2002 .

[12]  V. P. Belavkin,et al.  Quantum continual measurements and a posteriori collapse on CCR , 1992 .

[13]  Constructing the davies process of resonance fluorescence with quantum stochastic calculus , 2002, quant-ph/0207164.

[14]  H. Carmichael An open systems approach to quantum optics , 1993 .

[15]  V. P. Belavkin,et al.  A new wave equation for a continuous nondemolition measurement , 1989 .

[16]  E. B. Davies Quantum theory of open systems , 1976 .

[17]  Masamichi Takesaki,et al.  Conditional Expectations in von Neumann Algebras , 1972 .

[18]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[19]  Klaus Mølmer,et al.  A Monte Carlo wave function method in quantum optics , 1993, Optical Society of America Annual Meeting.

[20]  Milburn,et al.  Quantum theory of field-quadrature measurements. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[21]  H. Carmichael Stochastic Schrödinger Equations: What They Mean and What They Can Do , 1996 .

[22]  G. Kallianpur Stochastic Filtering Theory , 1980 .

[23]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras, Volume II: Advanced Theory , 1997 .

[24]  David Williams,et al.  Probability with Martingales: Martingales , 1991 .

[25]  V. P. Belavkin,et al.  A quantum particle undergoing continuous observation , 1989 .

[26]  N. Gisin Stochastic quantum dynamics and relativity , 1989 .

[27]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[28]  Decoherent Histories and Quantum State Diffusion , 1994, gr-qc/9403047.

[29]  V. P. Belavkin,et al.  Quantum Filtering of Markov Signals with White Quantum Noise , 2005, quant-ph/0512091.

[30]  V. P. Belavkin,et al.  Measurements continuous in time and a posteriori states in quantum mechanics , 1991 .

[31]  Alberto Barchielli,et al.  Measurement theory and stochastic differential equations in quantum mechanics. , 1986, Physical review. A, General physics.

[33]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[34]  E. Davies,et al.  Quantum stochastic processes , 1969 .

[35]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[36]  V. Belavkin,et al.  A stochastic Hamiltonian approach for quantum jumps, spontaneous localizations, and continuous trajectories , 1996, quant-ph/0512192.

[37]  P. Meyer,et al.  Quantum Probability for Probabilists , 1993 .

[38]  N. Gisin Quantum measurements and stochastic processes , 1984 .

[39]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[40]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[41]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .