Notch signaling in bone marrow-derived FSP-1 cells initiates neointima formation in arteriovenous fistulas.

[1]  S. Schwartz Faculty Opinions recommendation of Corrigendum: KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. , 2018, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[2]  D. Mukhopadhyay,et al.  Tracking and Therapeutic Value of Human Adipose Tissue-derived Mesenchymal Stem Cell Transplantation in Reducing Venous Neointimal Hyperplasia Associated with Arteriovenous Fistula. , 2016, Radiology.

[3]  R. Virmani,et al.  PDGFRβ signaling regulates local inflammation and synergizes with hypercholesterolemia to promote atherosclerosis , 2015, Nature Communications.

[4]  Laura S. Shankman,et al.  Correction: Corrigendum: KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis , 2015, Nature Medicine.

[5]  Laura S. Shankman,et al.  KLF4 Dependent Phenotypic Modulation of SMCs Plays a Key Role in Atherosclerotic Plaque Pathogenesis , 2015, Nature Medicine.

[6]  Ira Tabas,et al.  Recent insights into the cellular biology of atherosclerosis , 2015, The Journal of cell biology.

[7]  C. Fernández-Hernando,et al.  Genetic Evidence Supports a Major Role for Akt1 in VSMCs During Atherogenesis. , 2015, Circulation research.

[8]  W. Mitch,et al.  Migration of smooth muscle cells from the arterial anastomosis of arteriovenous fistulas requires Notch activation to form neointima , 2015, Kidney international.

[9]  Yun Wang,et al.  Impaired Integrin &bgr;3 Delays Endothelial Cell Regeneration and Contributes to Arteriovenous Graft Failure in Mice , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[10]  Jun Jiang,et al.  Smooth muscle cells from the anastomosed artery are the major precursors for neointima formation in both artery and vein grafts , 2014, Basic Research in Cardiology.

[11]  W. Mitch,et al.  Blocking Notch in endothelial cells prevents arteriovenous fistula failure despite CKD. , 2014, Journal of the American Society of Nephrology : JASN.

[12]  D. Mukhopadhyay,et al.  Adventitial transduction of lentivirus-shRNA-VEGF-A in arteriovenous fistula reduces venous stenosis formation , 2013, Kidney international.

[13]  R. Vazquez-Padrón,et al.  Myofibroblasts: the ideal target to prevent arteriovenous fistula failure? , 2014, Kidney international.

[14]  Philippe Soriano,et al.  The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. , 2013, Developmental biology.

[15]  L. Truong,et al.  Chronic kidney disease accelerates endothelial barrier dysfunction in a mouse model of an arteriovenous fistula. , 2013, American journal of physiology. Renal physiology.

[16]  A. Joutel,et al.  Notch signalling in smooth muscle cells during development and disease. , 2012, Cardiovascular research.

[17]  C. Blobel,et al.  Notch-RBP-J Signaling Regulates IRF8 to Promote Inflammatory Macrophage Polarization , 2012, Nature Immunology.

[18]  K. Yutzey,et al.  Notch pathway regulation of neural crest cell development in vivo , 2012, Developmental dynamics : an official publication of the American Association of Anatomists.

[19]  Jie Du,et al.  FSP-1 Silencing in Bone Marrow Cells Suppresses Neointima Formation in Vein Graft , 2012, Circulation research.

[20]  H. Horita,et al.  SDF-1&agr; Induction in Mature Smooth Muscle Cells by Inactivation of PTEN Is a Critical Mediator of Exacerbated Injury-Induced Neointima Formation , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[21]  G. Beck,et al.  Use of aspirin associates with longer primary patency of hemodialysis grafts. , 2011, Journal of the American Society of Nephrology : JASN.

[22]  Zhao-Jun Liu,et al.  Origin of Neointimal Cells in Arteriovenous Fistulae: Bone Marrow, Artery, or the Vein Itself? , 2011, Seminars in dialysis.

[23]  J. Grande,et al.  MCP-1 contributes to arteriovenous fistula failure. , 2011, Journal of the American Society of Nephrology : JASN.

[24]  J. Grande,et al.  ß-Catenin is markedly induced in a murine model of an arteriovenous fistula: the effect of metalloproteinase inhibition. , 2010, American journal of physiology. Renal physiology.

[25]  G. Beck,et al.  Effect of dipyridamole plus aspirin on hemodialysis graft patency. , 2009, The New England journal of medicine.

[26]  S. Heffelfinger,et al.  Cellular phenotypes in human stenotic lesions from haemodialysis vascular access. , 2009, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[27]  K. Hruska,et al.  CKD accelerates development of neointimal hyperplasia in arteriovenous fistulas. , 2009, Journal of the American Society of Nephrology : JASN.

[28]  Raphael Kopan,et al.  The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism , 2009, Cell.

[29]  G. Beck,et al.  Effect of clopidogrel on early failure of arteriovenous fistulas for hemodialysis: a randomized controlled trial. , 2008, JAMA.

[30]  YuefengTang,et al.  Hairy-Related Transcription Factors Inhibit Notch-Induced Smooth Muscle α-Actin Expression by Interfering With Notch Intracellular Domain/CBF-1 Complex Interaction With the CBF-1–Binding Site , 2008 .

[31]  L. Liaw,et al.  Hairy-Related Transcription Factors Inhibit Notch-Induced Smooth Muscle α-Actin Expression by Interfering With Notch Intracellular Domain/CBF-1 Complex Interaction With the CBF-1–Binding Site , 2008, Circulation research.

[32]  R. Banerjee,et al.  Neointimal hyperplasia in early arteriovenous fistula failure. , 2007, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[33]  Jie Du,et al.  Mechanical Stretch Simulates Proliferation of Venous Smooth Muscle Cells Through Activation of the Insulin-Like Growth Factor-1 Receptor , 2007, Arteriosclerosis, thrombosis, and vascular biology.

[34]  J. Aster,et al.  Delta-Like 4 Induces Notch Signaling in Macrophages: Implications for Inflammation , 2007, Circulation.

[35]  Prabir Roy-Chaudhury,et al.  Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. , 2006, Journal of the American Society of Nephrology : JASN.

[36]  D. Mukhopadhyay,et al.  Adventitial remodeling with increased matrix metalloproteinase-2 activity in a porcine arteriovenous polytetrafluoroethylene grafts. , 2005, Kidney international.

[37]  James W. Thomas,et al.  Immunolocalization of fibroblast growth factor-1 (FGF-1), its receptor (FGFR-1), and fibroblast-specific protein-1 (FSP-1) in inflammatory renal disease. , 2005, Kidney international.

[38]  P. Peduzzi,et al.  Randomized controlled trial of clopidogrel plus aspirin to prevent hemodialysis access graft thrombosis. , 2003, Journal of the American Society of Nephrology : JASN.

[39]  M. Robbin,et al.  Increasing arteriovenous fistulas in hemodialysis patients: problems and solutions. , 2002, Kidney international.

[40]  C. Clase,et al.  Low-intensity warfarin is ineffective for the prevention of PTFE graft failure in patients on hemodialysis: a randomized controlled trial. , 2002, Journal of the American Society of Nephrology : JASN.

[41]  Raphael Kopan,et al.  Notch signaling: from the outside in. , 2000, Developmental biology.

[42]  E. Andreeva,et al.  Subendothelial smooth muscle cells of human aorta express macrophage antigen in situ and in vitro. , 1997, Atherosclerosis.