ALE–VMS formulation for stratified turbulent incompressible flows with applications

A numerical formulation for incompressible flows with stable stratification is developed using the framework of variational multiscale methods. In the proposed formulation, both density and temperature stratification are handled in a unified manner. The formulation is augmented with weakly-enforced essential boundary conditions and is suitable for applications involving moving domains, such as fluid–structure interaction. The methodology is tested using three numerical examples ranging from flow-physics benchmarks to a simulation of a full-scale offshore wind-turbine rotor spinning inside an atmospheric boundary layer. Good agreement is achieved with experimental and computational results reported by other researchers. The wind-turbine rotor simulation shows that flow stratification has a strong influence on the dynamic rotor thrust and torque loads.

[1]  A. Korobenko,et al.  Aerodynamic Simulation of Vertical-Axis Wind Turbines , 2014 .

[2]  T. Hughes,et al.  A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis , 1989 .

[3]  Tayfun E. Tezduyar,et al.  SPACE–TIME VMS METHODS FOR MODELING OF INCOMPRESSIBLE FLOWS AT HIGH REYNOLDS NUMBERS , 2013 .

[4]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[5]  Jason Jonkman,et al.  Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loading: Preprint , 2012 .

[6]  Tayfun E. Tezduyar,et al.  Special methods for aerodynamic-moment calculations from parachute FSI modeling , 2015 .

[7]  Stuart B. Dalziel,et al.  Visualization and measurement of internal waves by ‘synthetic schlieren’. Part 1. Vertically oscillating cylinder , 1999, Journal of Fluid Mechanics.

[8]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[9]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[10]  Yuri Bazilevs,et al.  Engineering Analysis and Design with ALE-VMS and Space–Time Methods , 2014 .

[11]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[12]  Tayfun E. Tezduyar,et al.  Space–time fluid mechanics computation of heart valve models , 2014 .

[13]  Tayfun E. Tezduyar,et al.  Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms , 2013 .

[14]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[15]  Tayfun E. Tezduyar,et al.  FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes , 2014 .

[16]  Kenji Takizawa,et al.  Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping , 2015 .

[17]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[18]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[19]  Yuri Bazilevs,et al.  Experimental and numerical FSI study of compliant hydrofoils , 2015 .

[20]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[21]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[22]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[23]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[24]  D. E. Mowbray,et al.  A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid , 1967, Journal of Fluid Mechanics.

[25]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[26]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[27]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[28]  Kenji Takizawa,et al.  Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent , 2012, Computational Mechanics.

[29]  Yuri Bazilevs,et al.  CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION , 2013 .

[30]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[31]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[32]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[33]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[34]  Fernando Porté-Agel,et al.  Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms , 2011 .

[35]  S. Sarkar,et al.  Large eddy simulation of a stratified boundary layer under an oscillatory current , 2009, Journal of Fluid Mechanics.

[36]  G. Spedding The evolution of initially turbulent bluff-body wakes at high internal Froude number , 1997, Journal of Fluid Mechanics.

[37]  Tayfun E. Tezduyar,et al.  Multiscale space-time methods for thermo-fluid analysis of a ground vehicle and its tires , 2015 .

[38]  Kenji Takizawa,et al.  ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling , 2014 .

[39]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[40]  野村 信福,et al.  「Fluid Mechanics」, 2nd edition, Londau and Lifshitz著, Pergamon Press(私のすすめるこの一冊)(コーヒーブレーク) , 2002 .

[41]  Thomas J. R. Hughes,et al.  Stabilized Methods for Compressible Flows , 2010, J. Sci. Comput..

[42]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[43]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[44]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[45]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[46]  O. Eiff,et al.  Experimental investigation of the collapse of a turbulent wake in a stably stratified fluid , 2002 .

[47]  Yuri Bazilevs,et al.  Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods , 2014 .

[48]  T. Tezduyar,et al.  Space–time computation techniques with continuous representation in time (ST-C) , 2014 .

[49]  Kenji Takizawa,et al.  FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta , 2014 .

[50]  Tayfun E. Tezduyar,et al.  FSI modeling of the Orion spacecraft drogue parachutes , 2015 .

[51]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[52]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[53]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[54]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[55]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[56]  Tayfun E. Tezduyar,et al.  Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes , 2014 .

[57]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[58]  Kenji Takizawa,et al.  Space–time interface-tracking with topology change (ST-TC) , 2014 .

[59]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[60]  N. Troldborg,et al.  A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes , 2014 .

[61]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[62]  A. Holtslag,et al.  An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer , 2004 .

[63]  E. TezduyarT.,et al.  A new strategy for finite element computations involving moving boundaries and interfacesthe deforming-spatial-domain/space-time procedure. II , 1992 .

[64]  Tayfun E. Tezduyar,et al.  Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations , 1986 .

[65]  A. Korobenko,et al.  Novel structural modeling and mesh moving techniques for advanced fluid–structure interaction simulation of wind turbines , 2015 .

[66]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[67]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[68]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[69]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[70]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[71]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[72]  S. Sarkar,et al.  The spatial evolution of fluctuations in a self-propelled wake compared to a patch of turbulence , 2013 .

[73]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[74]  Tayfun E. Tezduyar,et al.  Modeling of Fluid-Structure Interactions with the Space-Time Techniques , 2006 .

[75]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[76]  Kenji Takizawa,et al.  Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity , 2013 .

[77]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[78]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[79]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[80]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012 .

[81]  Kenji Takizawa,et al.  Computer modeling techniques for flapping-wing aerodynamics of a locust , 2013 .

[82]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[83]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[84]  Sutanu Sarkar,et al.  Direct and large-eddy simulations of internal tide generation at a near-critical slope , 2011, Journal of Fluid Mechanics.

[85]  Kenji Takizawa,et al.  Computational engineering analysis with the new-generation space–time methods , 2014 .

[86]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[87]  A. Korobenko,et al.  STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES , 2013 .

[88]  Tayfun E. Tezduyar,et al.  Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle , 2012 .

[89]  S. Sarkar,et al.  Simulation of a propelled wake with moderate excess momentum in a stratified fluid , 2011, Journal of Fluid Mechanics.

[90]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[91]  J. Dieudonné Temporal / spatial simulation of the stratified far wake of a sphere , 2010 .