Diagenetic transformation of organic matter in the Holocene sediments of the Black Sea: pyrolysis data

[1]  S. Myslenkov,et al.  Simulation of the interannual and seasonal variability of the overflow transport through the Denmark Strait , 2013, Oceanology.

[2]  A. Savvichev,et al.  Transformation of suspended particulate matter into sediment in the Kara Sea in September of 2011 , 2013, Oceanology.

[3]  Jack J. Middelburg,et al.  Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment , 2012 .

[4]  G. A. Pavlova,et al.  Energy sources for diagenesis: Evidence from the Black Sea , 2011 .

[5]  J. Croué,et al.  Thermal release of nitrogen organics from natural organic matter using micro scale sealed vessel pyrolysis , 2007 .

[6]  D. Welte,et al.  Über die Bevorzugung geradzahliger n-Alkane in Sedimentgesteinen , 1973, Naturwissenschaften.

[7]  S. Derenne,et al.  Isolation and analysis of the non‐hydrolysable fraction of a forest soil and an arable soil (Lacadée, southwest France) , 2003 .

[8]  C. Di-Giovanni,et al.  Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations , 2003 .

[9]  J. Damsté,et al.  Formation of insoluble, nonhydrolyzable, sulfur-rich macromolecules via incorporation of inorganic sulfur species into algal carbohydrates , 2000 .

[10]  D. Fabbri,et al.  The chemical composition of Black Sea suspended particulate organic matter: pyrolysis-GC/MS as a complementary tool to traditional oceanographic analyses , 2000 .

[11]  Jiamo Fu,et al.  Liquid-Saturated Hydrocarbons Resulting from Pyrolysis of the Marine Coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica , 1999, Marine Biotechnology.

[12]  D. Fabbri,et al.  Comparison between CP/MAS 13C-NMR and pyrolysis-GC/MS in the structural characterization of humins and humic acids of soil and sediments , 1998 .

[13]  Stefan Schouten,et al.  Controls on the molecular and carbon isotopic composition of organic matter deposited in a Kimmeridgian euxinic shelf sea: Evidence for preservation of carbohydrates through sulfurisation , 1998 .

[14]  R. Evershed,et al.  Chemical Composition of Paleozoic and Mesozoic Fossil Invertebrate Cuticles As Revealed by Pyrolysis−Gas Chromatography/Mass Spectrometry , 1997 .

[15]  D. Fabbri,et al.  Early diagenesis of organic matter in recent Black Sea sediments: characterization and source assessment , 1996 .

[16]  Giuseppe Chiavari,et al.  Pyrolysis—gas chromatography/mass spectrometry of amino acids , 1992 .

[17]  G. Ourisson,et al.  Hopanoids. 2. Biohopanoids: a novel class of bacterial lipids , 1992 .

[18]  J. Damsté,et al.  Organic sulphur in macromolecular sedimentary organic matter. II. Analysis of distributions of sulphur-containing pyrolysis products using multivariate techniques☆ , 1992 .

[19]  S. Calvert Geochemistry and Origin of the Holocene Sapropel in the Black Sea , 1990 .

[20]  K. Lehtonen,et al.  Occurrence of long-chain acyclic methyl ketones in Sphagnum and Carex peats of various degress of humification , 1990 .

[21]  J. Damsté,et al.  Quenching of labile functionalised lipids by inorganic sulphur species: evidence for the formation of sedimentary organic sulphur compounds at the early stages of diagenesis , 1989 .

[22]  D. Welte,et al.  Petroleum Formation and Occurrence , 1989 .

[23]  S. Brassell,et al.  Tocopherols as likely precursors of pristane in ancient sediments and crude oils , 1984, Nature.

[24]  G. Demaison,et al.  Anoxic Environments and Oil Source Bed Genesis , 1980 .

[25]  D. Meent,et al.  Origin of unsaturated isoprenoid hydrocarbons in pyrolysates of suspended matter and surface sediments , 1980 .

[26]  G. Eglinton,et al.  Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi , 1980 .

[27]  M. Blumer,et al.  Pristane in Zooplankton , 1963, Science.