Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy
暂无分享,去创建一个
Clement Atzberger | Joachim Hill | Henning Buddenbaum | Martin Schlerf | Willy Werner | Gebhard Schüler | M. Schlerf | J. Hill | C. Atzberger | W. Werner | H. Buddenbaum | G. Schüler
[1] M. Cho,et al. Towards red‐edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data , 2008 .
[2] Clement Atzberger,et al. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements , 2008 .
[3] A. Gitelson,et al. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll , 1996 .
[4] A. Skidmore,et al. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa , 2004 .
[5] P. Curran,et al. LIBERTY—Modeling the Effects of Leaf Biochemical Concentration on Reflectance Spectra , 1998 .
[6] N. T. Hobbs,et al. Fire and Grazing in the Tallgrass Prairie: Contingent Effects on Nitrogen Budgets , 1991 .
[7] J. Peñuelas,et al. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals , 2002 .
[8] A. Goetz,et al. Extraction of dry leaf spectral features from reflectance spectra of green vegetation , 1994 .
[9] B. Turner,et al. Estimating foliage nitrogen concentration from HYMAP data using continuum, removal analysis , 2004 .
[10] David L. Peterson,et al. Scientific issues and potential remote-sensing requirements for plant biochemical content , 1992 .
[11] Pablo J. Zarco-Tejada,et al. Hyperspectral Remote Sensing of Forest Condition: Estimating Chlorophyll Content in Tolerant Hardwoods , 2003, Forest Science.
[12] Michael D. Steven,et al. High resolution derivative spectra in remote sensing , 1990 .
[13] C. Atzberger. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models , 2004 .
[14] John R. Miller,et al. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..
[15] Gerhard Wagner,et al. Biomonitoring Environmental Specimen Banking Program Environmental Specimen Banking Program ( EBS ) Biomonitoring and Specimen Banking Environmental , 2008 .
[16] Raymond F. Kokaly,et al. Investigating a Physical Basis for Spectroscopic Estimates of Leaf Nitrogen Concentration , 2001 .
[17] R. Kokaly,et al. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies , 2009 .
[18] B. Datt. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total Carotenoid Content in Eucalyptus Leaves , 1998 .
[19] Daniel Schlaepfer,et al. PARGE: parametric geocoding based on GCP-calibrated auxiliary data , 1998, Optics & Photonics.
[20] C. Wessman,et al. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems , 1988, Nature.
[21] R. Hüttl,et al. Die Blattanalyse als Diagnose- und Monitoringinstrument in Waldökosystemen , 1992 .
[22] John F. Muratore,et al. Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics , 1982 .
[23] N. Goel,et al. Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies , 2004 .
[24] David L. Peterson,et al. Multivariate analysis of AVIRIS data for canopy biochemical estimation along the oregon transect , 1994 .
[25] Paul J. Curran,et al. Forest ecosystem simulation modelling: the role of remote sensing , 1999 .
[26] P. R. Wilson,et al. A new instrument concept for nitrogen/protein analysis. A challenge to the Kjeldahl method. , 1990 .
[27] M. Schlerf,et al. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data , 2005 .
[28] Moon S. Kim,et al. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .
[29] M. Schlerf. Determination of structural and chemical forest attributes using hyperspectral remote sensing data : case studies in Norway spruce forests , 2006 .
[30] William J. Foley,et al. Estimating Nitrogen in Eucalypt Foliage by Automatically Extracting Tree Spectra from HyMap ™ Data , 2007 .
[31] Mark Cutler,et al. Estimating Canopy Chlorophyll Concentration from Field and Airborne Spectra , 1999 .
[32] Richard H. Waring,et al. Forest Ecosystems: Analysis at Multiple Scales , 1985 .
[33] John R. Miller,et al. Estimating chlorophyll concentration in conifer needles with hyperspectral data: An assessment at the needle and canopy level , 2008 .
[34] J. Dungan,et al. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration , 1992 .
[35] Christopher B. Field,et al. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves☆ , 1994 .
[36] G. Andreoli,et al. Investigation of leaf biochemistry by statistics , 1995 .
[37] P. Curran. Remote sensing of foliar chemistry , 1989 .
[38] Jean-Philippe Gastellu-Etchegorry,et al. An assessment of canopy chemistry with AVIRIS ― a case study in the Landes Forest, South-west France , 1995 .
[39] H. Lichtenthaler. CHLOROPHYLL AND CAROTENOIDS: PIGMENTS OF PHOTOSYNTHETIC BIOMEMBRANES , 1987 .
[40] L. Weyer. Near-Infrared Spectroscopy of Organic Substances , 1985 .
[41] John R. Miller,et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .
[42] S. Ustin,et al. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data , 1996 .
[43] F. Baret,et al. Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems , 1996 .
[44] G. Asner. Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .
[45] R. Clark,et al. Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression , 1999 .
[46] Xiwei Yin,et al. Variation in foliar nitrogen concentration by forest type and climatic gradients in North America , 1993 .
[47] Paul J. Curran,et al. The signal-to-noise ratio (SNR) required for the estimation of foliar biochemical concentrations , 1996 .
[48] Henning Buddenbaum,et al. Assessment of forest productivity using an ecosystem process model, remotely sensed Lai maps and field data , 2004 .
[49] Daniel Schläpfer,et al. 1st EARSEL Workshop on Imaging Spectroscopy , 1998 .
[50] J. Dungan,et al. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies , 2001 .
[51] M. Schlerf,et al. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data , 2006 .
[52] S. Ollinger,et al. A generalizable method for remote sensing of canopy nitrogen across a wide range of forest ecosystems , 2008 .
[53] G. A. Blackburn,et al. Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches , 1998 .
[54] Peter M. Vitousek,et al. Nutrient Cycling and Nutrient Use Efficiency , 1982, The American Naturalist.
[55] B. Gao,et al. Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data , 1995 .
[56] F. Baret,et al. PROSPECT: A model of leaf optical properties spectra , 1990 .
[57] Michael E. Schaepman,et al. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy , 2009 .
[58] G. A. Blackburn,et al. Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery , 2002 .
[59] R. Jenssen,et al. 1 THE HYMAP TM AIRBORNE HYPERSPECTRAL SENSOR : THE SYSTEM , CALIBRATION AND PERFORMANCE , 1998 .