Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy

The research evaluated the information content of spectral reflectance (laboratory and airborne data) for the estimation of needle chlorophyll (CAB) and nitrogen (CN) concentration in Norway spruce (Picea abies L. Karst.) needles. To identify reliable predictive models different types of spectral transformations were systematically compared regarding the accuracy of prediction. The results of the cross-validated analysis showed that CAB can be well estimated from laboratory and canopy reflectance data. The best predictive model to estimate CAB was achieved from laboratory spectra using continuum-removal transformed data (R2cv = 0.83 and a relative RMSEcv of 8.1%, n = 78) and from hyperspectral HyMap data using band-depth normalised spectra (R2cv = 0.90, relative RMSEcv = 2.8%, n = 13). Concerning the nitrogen concentration, we observed somewhat weaker relations, with however still acceptable accuracies (at canopy level: R2cv = 0.57, relative RMSEcv = 4.6%). The wavebands selected in the regression models to estimate CAB were typically located in the red edge region and near the green reflectance peak. For CN, additional wavebands related to a known protein absorption feature at 2350 nm were selected. The portion of selected wavebands attributable to known absorption features strongly depends on the type of spectral transformation applied. A method called “water removal” (WR) produced for canopy spectra the largest percentage of wavebands directly or indirectly related to known absorption features. The derived chlorophyll and nitrogen maps may support the detection and the monitoring of environmental stressors and are also important inputs to many bio-geochemical process models.

[1]  M. Cho,et al.  Towards red‐edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data , 2008 .

[2]  Clement Atzberger,et al.  LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements , 2008 .

[3]  A. Gitelson,et al.  Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll , 1996 .

[4]  A. Skidmore,et al.  Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa , 2004 .

[5]  P. Curran,et al.  LIBERTY—Modeling the Effects of Leaf Biochemical Concentration on Reflectance Spectra , 1998 .

[6]  N. T. Hobbs,et al.  Fire and Grazing in the Tallgrass Prairie: Contingent Effects on Nitrogen Budgets , 1991 .

[7]  J. Peñuelas,et al.  Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals , 2002 .

[8]  A. Goetz,et al.  Extraction of dry leaf spectral features from reflectance spectra of green vegetation , 1994 .

[9]  B. Turner,et al.  Estimating foliage nitrogen concentration from HYMAP data using continuum, removal analysis , 2004 .

[10]  David L. Peterson,et al.  Scientific issues and potential remote-sensing requirements for plant biochemical content , 1992 .

[11]  Pablo J. Zarco-Tejada,et al.  Hyperspectral Remote Sensing of Forest Condition: Estimating Chlorophyll Content in Tolerant Hardwoods , 2003, Forest Science.

[12]  Michael D. Steven,et al.  High resolution derivative spectra in remote sensing , 1990 .

[13]  C. Atzberger Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models , 2004 .

[14]  John R. Miller,et al.  Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[15]  Gerhard Wagner,et al.  Biomonitoring Environmental Specimen Banking Program Environmental Specimen Banking Program ( EBS ) Biomonitoring and Specimen Banking Environmental , 2008 .

[16]  Raymond F. Kokaly,et al.  Investigating a Physical Basis for Spectroscopic Estimates of Leaf Nitrogen Concentration , 2001 .

[17]  R. Kokaly,et al.  Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies , 2009 .

[18]  B. Datt Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total Carotenoid Content in Eucalyptus Leaves , 1998 .

[19]  Daniel Schlaepfer,et al.  PARGE: parametric geocoding based on GCP-calibrated auxiliary data , 1998, Optics & Photonics.

[20]  C. Wessman,et al.  Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems , 1988, Nature.

[21]  R. Hüttl,et al.  Die Blattanalyse als Diagnose- und Monitoringinstrument in Waldökosystemen , 1992 .

[22]  John F. Muratore,et al.  Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics , 1982 .

[23]  N. Goel,et al.  Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies , 2004 .

[24]  David L. Peterson,et al.  Multivariate analysis of AVIRIS data for canopy biochemical estimation along the oregon transect , 1994 .

[25]  Paul J. Curran,et al.  Forest ecosystem simulation modelling: the role of remote sensing , 1999 .

[26]  P. R. Wilson,et al.  A new instrument concept for nitrogen/protein analysis. A challenge to the Kjeldahl method. , 1990 .

[27]  M. Schlerf,et al.  Remote sensing of forest biophysical variables using HyMap imaging spectrometer data , 2005 .

[28]  Moon S. Kim,et al.  Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .

[29]  M. Schlerf Determination of structural and chemical forest attributes using hyperspectral remote sensing data : case studies in Norway spruce forests , 2006 .

[30]  William J. Foley,et al.  Estimating Nitrogen in Eucalypt Foliage by Automatically Extracting Tree Spectra from HyMap ™ Data , 2007 .

[31]  Mark Cutler,et al.  Estimating Canopy Chlorophyll Concentration from Field and Airborne Spectra , 1999 .

[32]  Richard H. Waring,et al.  Forest Ecosystems: Analysis at Multiple Scales , 1985 .

[33]  John R. Miller,et al.  Estimating chlorophyll concentration in conifer needles with hyperspectral data: An assessment at the needle and canopy level , 2008 .

[34]  J. Dungan,et al.  Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration , 1992 .

[35]  Christopher B. Field,et al.  Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves☆ , 1994 .

[36]  G. Andreoli,et al.  Investigation of leaf biochemistry by statistics , 1995 .

[37]  P. Curran Remote sensing of foliar chemistry , 1989 .

[38]  Jean-Philippe Gastellu-Etchegorry,et al.  An assessment of canopy chemistry with AVIRIS ― a case study in the Landes Forest, South-west France , 1995 .

[39]  H. Lichtenthaler CHLOROPHYLL AND CAROTENOIDS: PIGMENTS OF PHOTOSYNTHETIC BIOMEMBRANES , 1987 .

[40]  L. Weyer Near-Infrared Spectroscopy of Organic Substances , 1985 .

[41]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[42]  S. Ustin,et al.  Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data , 1996 .

[43]  F. Baret,et al.  Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems , 1996 .

[44]  G. Asner Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .

[45]  R. Clark,et al.  Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression , 1999 .

[46]  Xiwei Yin,et al.  Variation in foliar nitrogen concentration by forest type and climatic gradients in North America , 1993 .

[47]  Paul J. Curran,et al.  The signal-to-noise ratio (SNR) required for the estimation of foliar biochemical concentrations , 1996 .

[48]  Henning Buddenbaum,et al.  Assessment of forest productivity using an ecosystem process model, remotely sensed Lai maps and field data , 2004 .

[49]  Daniel Schläpfer,et al.  1st EARSEL Workshop on Imaging Spectroscopy , 1998 .

[50]  J. Dungan,et al.  Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies , 2001 .

[51]  M. Schlerf,et al.  Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data , 2006 .

[52]  S. Ollinger,et al.  A generalizable method for remote sensing of canopy nitrogen across a wide range of forest ecosystems , 2008 .

[53]  G. A. Blackburn,et al.  Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches , 1998 .

[54]  Peter M. Vitousek,et al.  Nutrient Cycling and Nutrient Use Efficiency , 1982, The American Naturalist.

[55]  B. Gao,et al.  Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data , 1995 .

[56]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[57]  Michael E. Schaepman,et al.  Retrieval of foliar information about plant pigment systems from high resolution spectroscopy , 2009 .

[58]  G. A. Blackburn,et al.  Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery , 2002 .

[59]  R. Jenssen,et al.  1 THE HYMAP TM AIRBORNE HYPERSPECTRAL SENSOR : THE SYSTEM , CALIBRATION AND PERFORMANCE , 1998 .