Intersecting random translates of invariant Cantor sets

SummaryGiven two Cantor setsX andY in [0, 1), invariant under the mapx→b x mod 1, the Hausdorff dimension of (X+t)∩Y is constant almost everywhere. WhenX,Y are defined by admissible digits in baseb, and more generally by sofic systems, we compute this dimension in terms of the largest Lyapunov exponent of a random product of matrices. The results are extended to higher dimensions and multiple intersections.

[1]  SOME ALGEBRAIC PROPERTIES OF SMALL SETS , 1975 .

[2]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[3]  K. Falconer The geometry of fractal sets: Contents , 1985 .

[4]  Mike Boyle,et al.  A note on minimal covers for sofic systems , 1985 .

[5]  P. Mattila Hausdorff dimension and capacities of intersections of sets inn-space , 1984 .

[6]  P. A. P. Moran,et al.  Additive functions of intervals and Hausdorff measure , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  W. Parry Intrinsic Markov chains , 1964 .

[8]  Floris Takens,et al.  HYPERBOLICITY AND THE CREATION OF HOMOCLINIC ORBITS , 1987 .

[9]  Patrick Billingsley,et al.  Hausdorff dimension in probability theory II , 1960 .

[10]  F. Ledrappier,et al.  A Relativised Variational Principle for Continuous Transformations , 1977 .

[11]  Y. Kifer Ergodic theory of random transformations , 1986 .

[12]  J. M. Marstrand Some Fundamental Geometrical Properties of Plane Sets of Fractional Dimensions , 1954 .

[13]  R. Bowen Entropy for group endomorphisms and homogeneous spaces , 1971 .

[14]  P. Billingsley,et al.  Ergodic theory and information , 1966 .

[15]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[16]  H. Furstenberg,et al.  Products of Random Matrices , 1960 .

[17]  B. Weiss Subshifts of finite type and sofic systems , 1973 .

[18]  Helmut Cajar Billingsley dimension in probability spaces , 1981 .

[19]  K. Falconer The geometry of fractal sets , 1985 .

[20]  Claude Dellacherie Ensembles analytiques, capacités, mesures de Hausdorff , 1972 .

[21]  P. Walters Introduction to Ergodic Theory , 1977 .

[22]  L. Young Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.

[23]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.