Medical Image Registration by Simulated Annealing and genetic algorithms

Registration techniques in medical image processing are used to match anatomic structures from two or more images (CT, MRI, PET....) taken at different times to track for example the evolution of a disease. The core of the registration process is the maximization of a cost function expressing the similarity between these images. To resolve this problem, we have tested two global optimization techniques that are genetic algorithms and simulated annealing. In this paper we show some results obtained in medical images registration.

[1]  Tianzi Jiang,et al.  Intensity-based robust similarity for multimodal image registration , 2006, Int. J. Comput. Math..

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  Michel Salomon,et al.  Etude de la parallélisation de méthodes heuristiques d'optimisation combinatoire : application au recalage d'images médicales , 2001 .

[4]  Henry Leung,et al.  A maximum likelihood approach for image registration using control point and intensity , 2004, IEEE Transactions on Image Processing.

[5]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[6]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[7]  Fabrice Heitz,et al.  Topology preserving deformable image matching using constrained hierarchical parametric models , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[8]  M. Batouche,et al.  A new quantum-inspired genetic algorithm for solving the travelling salesman problem , 2004, 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04..

[9]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[10]  L.P. Caloba,et al.  New simulated annealing algorithms , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[11]  J. Dréo,et al.  Métaheuristiques pour l'optimisation difficile , 2003 .