Approximating shortest paths on a nonconvex polyhedron

We present an approximation algorithm that, given the boundary P of a simple, nonconvex polyhedron in R/sup 3/, and two points s and t on P, constructs a path on P between s and t whose length is at most 7(1+/spl epsi/)d/sub P/(s,t), where d/sub P/(s,t) is the length of the shortest path between s and t on P, and /spl epsi/>0 is an arbitrarily small positive constant. The algorithm runs in O(n/sup 5/3/ log/sup 5/3/ n) time, where n is the number of vertices in P. We also present a slightly faster algorithm that runs in O(n/sup 8/5/ log/sup 8/5/ n) time and returns a path whose length is at most 15(1+/spl epsi/)d/sub P/(s,t).

[1]  Christos H. Papadimitriou,et al.  An Algorithm for Shortest-Path Motion in Three Dimensions , 1985, Inf. Process. Lett..

[2]  Micha Sharir,et al.  On Shortest Paths in Polyhedral Spaces , 1986, SIAM J. Comput..

[3]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[4]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[5]  Subhash Suri,et al.  Practical methods for approximating shortest paths on a convex polytope in R3 , 1995, SODA '95.

[6]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[7]  Kenneth L. Clarkson,et al.  Approximation algorithms for shortest path motion planning , 1987, STOC.

[8]  Varol Akman Unobstructed Shortest Paths in Polyhedral Environments , 1987, Lecture Notes in Computer Science.

[9]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[10]  Jörg-Rüdiger Sack,et al.  An epsilon-Approximation for Weighted Shortest Paths on Polyhedral Surfaces , 1998, SWAT.

[11]  Varol Akman,et al.  Shortest Paths in 3-Space, Voronoi Diagrams with Barriers, and Related Complexity and Algebraic Issues , 1985 .

[12]  S. Suri,et al.  Practical methods for approximating shortest paths on a convex polytope in R 3 , 1995, SODA 1995.

[13]  Micha Sharir,et al.  Approximating shortest paths on a convex polytope in three dimensions , 1997, JACM.

[14]  Jörg-Rüdiger Sack,et al.  Approximating weighted shortest paths on polyhedral surfaces , 1997, SCG '97.

[15]  D. Mount Voronoi Diagrams on the Surface of a Polyhedron. , 1985 .

[16]  Joseph S. B. Mitchell,et al.  A new algorithm for computing shortest paths in weighted planar subdivisions (extended abstract) , 1997, SCG '97.

[17]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[18]  Joseph S. B. Mitchell,et al.  Shortest paths among obstacles in the plane , 1993, SCG '93.

[19]  Chee-Keng Yap,et al.  Approximate Euclidean Shortest Paths in 3-Space , 1997, Int. J. Comput. Geom. Appl..

[20]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.

[21]  Michiel H. M. Smid,et al.  Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[22]  Jeffrey S. Salowe Constructing multidimensional spanner graphs , 1991, Int. J. Comput. Geom. Appl..

[23]  B. Porter,et al.  Genetic computation of geodesics on three-dimensional curved surfaces , 1995 .

[24]  Chee-Keng Yap,et al.  Approximate Euclidean shortest path in 3-space , 1994, SCG '94.