Dynamics of meromorphic mappings with small topological degree II: Energy and invariant measure

We continue our study of the dynamics of meromorphic mappings with small topological degree ?2(f)<?1(f) on a compact Kahler surface X. Under general hypotheses we are able to construct a canonical invariant measure which is mixing, does not charge pluripolar sets and has a natural geometric description. Our hypotheses are always satisfied when X has Kodaira dimension zero, or when the mapping is induced by a polynomial endomorphism of C2. They are new even in the birational case (?2(f)=1). We also exhibit families of mappings where our assumptions are generically satisfied and show that if counterexamples exist, the corresponding measure must give mass to a pluripolar set.

[1]  J. Diller,et al.  Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory , 2008, 0806.0146.

[2]  J. Diller,et al.  Dynamics of meromorphic maps with small topological degree I: from cohomology to currents , 2008, 0803.0955.

[3]  M. Jonsson,et al.  Dynamical compactifications of C^2 , 2007, 0711.2770.

[4]  A. Zeriahi,et al.  Domains of definition of Monge-Ampère operators on compact Kähler manifolds , 2007 .

[5]  Sosial og helsedepartementet I-10/2000 , 2006 .

[6]  J. Diller,et al.  Regularity of dynamical Green’s functions , 2006, math/0601216.

[7]  Helse og omsorgsdepartementet I-15/2005 , 2005 .

[8]  Romain Dujardin Laminar currents and birational dynamics , 2004, math/0409557.

[9]  A. Zeriahi,et al.  Intrinsic capacities on compact Kähler manifolds , 2004, math/0401302.

[10]  E. Bedford,et al.  Energy and invariant measures for birational surface maps , 2003, math/0310002.

[11]  E. Bedford ON THE DYNAMICS OF BIRATIONAL MAPPINGS OF THE PLANE , 2003 .

[12]  H. B. Messaoud,et al.  Opérateur de Monge-Ampère et Tranchage des Courants Positifs Fermés , 2000 .

[13]  B. A. Taylor,et al.  A new capacity for plurisubharmonic functions , 1982 .

[14]  P. Lelong Fonctions entières (n variables) et fonctions plurisousharmoniques d'ordre fini dansCn , 1964 .

[15]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: PRINCIPAL CLASSES OF ASYMPTOTIC TOPOLOGICAL INVARIANTS , 1995 .

[16]  S. d’Hères Monge-Ampère Operators , Lelong Numbers and Intersection Theory , 1991 .