Dynamics of meromorphic mappings with small topological degree II: Energy and invariant measure
暂无分享,去创建一个
[1] J. Diller,et al. Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory , 2008, 0806.0146.
[2] J. Diller,et al. Dynamics of meromorphic maps with small topological degree I: from cohomology to currents , 2008, 0803.0955.
[3] M. Jonsson,et al. Dynamical compactifications of C^2 , 2007, 0711.2770.
[4] A. Zeriahi,et al. Domains of definition of Monge-Ampère operators on compact Kähler manifolds , 2007 .
[5] Sosial og helsedepartementet. I-10/2000 , 2006 .
[6] J. Diller,et al. Regularity of dynamical Green’s functions , 2006, math/0601216.
[7] Helse og omsorgsdepartementet. I-15/2005 , 2005 .
[8] Romain Dujardin. Laminar currents and birational dynamics , 2004, math/0409557.
[9] A. Zeriahi,et al. Intrinsic capacities on compact Kähler manifolds , 2004, math/0401302.
[10] E. Bedford,et al. Energy and invariant measures for birational surface maps , 2003, math/0310002.
[11] E. Bedford. ON THE DYNAMICS OF BIRATIONAL MAPPINGS OF THE PLANE , 2003 .
[12] H. B. Messaoud,et al. Opérateur de Monge-Ampère et Tranchage des Courants Positifs Fermés , 2000 .
[13] B. A. Taylor,et al. A new capacity for plurisubharmonic functions , 1982 .
[14] P. Lelong. Fonctions entières (n variables) et fonctions plurisousharmoniques d'ordre fini dansCn , 1964 .
[15] Boris Hasselblatt,et al. Introduction to the Modern Theory of Dynamical Systems: PRINCIPAL CLASSES OF ASYMPTOTIC TOPOLOGICAL INVARIANTS , 1995 .
[16] S. d’Hères. Monge-Ampère Operators , Lelong Numbers and Intersection Theory , 1991 .