Deterministic and random synthesis of discrete chaos

In this paper, two anticontrol algorithms for synthesis of discrete chaos are introduced. In these algorithms, the control parameter of a discrete dynamical system is switched, either randomly or in a deterministic way, between two or more values corresponding to periodic motions, the result being chaotic behavior. These algorithms require no knowledge of specific mathematical properties of the underlying map modeling the system. The existence of chaos is demonstrated using various tools including graphical iteration, histogram, Lyapunov exponent and surrogate tests. In this paper, these very simple and implementable chaotifiers are applied to the logistic map.

[1]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[2]  Katja Lindenberg,et al.  Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis , 1993 .

[3]  James D. Meiss,et al.  Stochastic dynamical systems , 1994 .

[4]  ROBERT G. ROSE,et al.  Robert G , 2001 .

[5]  Chi K. Tse,et al.  A Surrogate Test for Pseudo‐periodic Time Series Data , 2002 .

[6]  Abbott,et al.  New paradoxical games based on brownian ratchets , 2000, Physical review letters.

[7]  Chen Guan CHAOS CONTROL AND ANTI-CONTROL , 2002 .

[8]  M Small,et al.  Surrogate data methods for data that isn't linear noise , 2007 .

[9]  S. Celikovsky,et al.  Chaos synthesis via root locus , 1994 .

[10]  L. J. Leon,et al.  Spatiotemporal evolution of ventricular fibrillation , 1998, Nature.

[11]  Diks,et al.  Efficient implementation of the gaussian kernel algorithm in estimating invariants and noise level from noisy time series data , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  M. Small Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance , 2005 .

[13]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[14]  Derek Abbott,et al.  Parrondo's paradox , 1999 .

[15]  Guanrong Chen,et al.  Introduction to anti-control of discrete chaos: theory and applications , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Guanrong Chen,et al.  Feedback anticontrol of discrete chaos , 1998 .

[17]  Michael Small,et al.  Surrogate Test for Pseudoperiodic Time Series Data , 2001 .

[18]  Michael Small,et al.  Nonlinear Phenomena Research Perspectives , 2007 .

[19]  Marius-F. Danca,et al.  Chaotifying Discontinuous Dynamical Systems via Time-Delay Feedback Algorithm , 2004, Int. J. Bifurc. Chaos.

[20]  J. Almeida,et al.  Can two chaotic systems give rise to order , 2004, nlin/0406010.

[21]  Guanrong Chen,et al.  Chaotification via arbitrarily Small Feedback Controls: Theory, Method, and Applications , 2000, Int. J. Bifurc. Chaos.