Cold Sintering: A Paradigm Shift for Processing and Integration of Ceramics.

This paper describes a sintering technique for ceramics and ceramic-based composites, using water as a transient solvent to effect densification (i.e. sintering) at temperatures between room temperature and 200 °C. To emphasize the incredible reduction in sintering temperature relative to conventional thermal sintering this new approach is named the "Cold Sintering Process" (CSP). Basically CSP uses a transient aqueous environment to effect densification by a mediated dissolution-precipitation process. CSP of NaCl, alkali molybdates and V2 O5 with small concentrations of water are described in detail, but the process is extended and demonstrated for a diverse range of chemistries (oxides, carbonates, bromides, fluorides, chlorides and phosphates), multiple crystal structures, and multimaterial applications. Furthermore, the properties of selected CSP samples are demonstrated to be essentially equivalent as samples made by conventional thermal sintering.

[1]  L. Greenspan Humidity Fixed Points of Binary Saturated Aqueous Solutions , 1977, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry.

[2]  Yaroslav Filinchuk,et al.  LiZnSO4F made in an ionic liquid: a ceramic electrolyte composite for solid-state lithium batteries. , 2011, Angewandte Chemie.

[3]  Zhe Zhao,et al.  Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening , 2002, Nature.

[4]  Hong Wang,et al.  Ultra-low Sintering Temperature Microwave Dielectric Ceramics Based on Na2O-MoO3 Binary System , 2015 .

[5]  R. Winston Revie,et al.  Uhlig's Corrosion Handbook: Revie/Corrosion Handbook 3E , 2011 .

[6]  Jari Juuti,et al.  Dielectric Properties of Lithium Molybdate Ceramic Fabricated at Room Temperature , 2014 .

[7]  I. H. Ismailzade,et al.  A new ferroelectric-semiconductor V2O5 , 1980 .

[8]  J. Svoboda,et al.  The Origins of Ceramic Technology at Dolni Věstonice, Czechoslovakia , 1989, Science.

[9]  J. Hulliger Chemistry and crystal growth , 1994 .

[10]  Yue Chen,et al.  Microwave and Infrared Dielectric Response of Temperature Stable (1−x)BaMoO4–xTiO2 Composite Ceramics , 2012 .

[11]  Gary L. Messing,et al.  Constrained Sintering of Low-Temperature Co-Fired Ceramics , 2006 .

[12]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[13]  Suk‐Joong L. Kang,et al.  Microstructural Evolution During Sintering with Control of the Interface Structure , 2009 .

[14]  G. Messing,et al.  Kinetic Analysis of Solution‐Precipitation During Liquid‐Phase Sintering of Alumina , 1990 .

[15]  Rustum Roy,et al.  Full sintering of powdered-metal bodies in a microwave field , 1999, Nature.

[16]  Jürg Hulliger Chemie und Kristallzüchtung , 1994 .

[17]  M. Cologna,et al.  Flash Sintering of Nanograin Zirconia in <5 s at 850°C , 2010 .

[18]  H. Nesbitt,et al.  Thermodynamic stability and kinetics of perovskite dissolution , 1981, Nature.

[19]  H. zur Loye,et al.  Materials discovery by flux crystal growth: quaternary and higher order oxides. , 2012, Angewandte Chemie.

[20]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[21]  S. Brantley,et al.  TEMPERATURE- AND PH-DEPENDENCE OF ALBITE DISSOLUTION RATE AT ACID PH , 1997 .

[22]  A. Sehirlioglu,et al.  Polymer composites for thermoelectric applications. , 2015, Angewandte Chemie.

[23]  W. Kingery,et al.  Densification during Sintering in the Presence of a Liquid Phase. I. Theory , 1959 .

[24]  I. Chen,et al.  A tough SiAlON ceramic based on α-Si3N4 with a whisker-like microstructure , 1997, Nature.

[25]  Heli Jantunen,et al.  Polymer–Ceramic Composites of 0–3 Connectivity for Circuits in Electronics: A Review , 2010 .

[26]  R. Wollast,et al.  Coordination chemistry of weathering: Kinetics of the surface-controlled dissolution of oxide minerals , 1990 .

[27]  C. Randall,et al.  Lead-free antiferroelectric: xCaZrO3-(1 -x)NaNbO3 system (0 ≤x≤ 0.10). , 2015, Dalton transactions.

[28]  Daniel E. Bugaris,et al.  Auf der Suche nach neuen Materialien: Kristallzucht von quaternären und höherwertigen Oxiden in Flussmitteln , 2012 .

[29]  K. Hirota,et al.  Fabrication, microstructure and electrical conductivity of V2O5 ceramics , 1996 .

[30]  Z. A. Munir,et al.  Fast low-temperature consolidation of bulk nanometric ceramic materials , 2006 .

[31]  O. Guillon,et al.  Constrained sintering: A delicate balance of scales , 2008 .

[32]  Hong Wang,et al.  Preparation and Microwave Dielectric Properties of Ultra‐low Temperature Sintering Ceramics in K2O–MoO3 Binary System , 2014 .

[33]  D. K. Chakrabarty,et al.  Electrical properties of vanadium pentoxide doped with lithium and sodium in the α-phase range , 1976 .

[34]  Michael J. Hoffmann,et al.  Preparation of interpenetrating ceramic–metal composites , 2004 .

[35]  Brendan T. McGrail,et al.  Polymerkomposite für thermoelektrische Anwendungen , 2015 .

[36]  Hong Wang,et al.  Microwave Dielectric Ceramics in Li2O–Bi2O3–MoO3 System with Ultra-Low Sintering Temperatures , 2010 .