Therapeutic approaches to spinal and bulbar muscular atrophy.

[1]  S. Tsuji,et al.  Efficacy and safety of leuprorelin in patients with spinal and bulbar muscular atrophy (JASMITT study): a multicentre, randomised, double-blind, placebo-controlled trial , 2010, The Lancet Neurology.

[2]  C. Bendotti,et al.  The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). , 2010, Human molecular genetics.

[3]  R. Arena,et al.  Exercise capacity and idebenone intervention in children and adolescents with Friedreich ataxia. , 2010, Archives of physical medicine and rehabilitation.

[4]  Christopher Lawrence,et al.  DEGENERATION , 2020, Side Effects May Include Strangers.

[5]  J. Holzbeierlein,et al.  Hsp90: A Drug Target? , 2010, Current oncology reports.

[6]  M. Hoch,et al.  Chaperone-Assisted Selective Autophagy Is Essential for Muscle Maintenance , 2010, Current Biology.

[7]  Patrik Brundin,et al.  Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment , 2009, Proceedings of the National Academy of Sciences.

[8]  K. Fischbeck,et al.  Overexpression of IGF-1 in Muscle Attenuates Disease in a Mouse Model of Spinal and Bulbar Muscular Atrophy , 2009, Neuron.

[9]  S. Finkbeiner,et al.  Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy. , 2009, Human molecular genetics.

[10]  J. Finsterer Bulbar and spinal muscular atrophy (Kennedy’s disease): a review , 2009, European journal of neurology.

[11]  G. Sobue,et al.  17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse. , 2009, Human molecular genetics.

[12]  G. Sobue,et al.  Neuropathology and Therapeutic Intervention in Spinal and Bulbar Muscular Atrophy , 2009, International journal of molecular sciences.

[13]  G. Sobue,et al.  Phase 2 trial of leuprorelin in patients with spinal and bulbar muscular atrophy , 2009, Annals of neurology.

[14]  C. Crone,et al.  Effect of aerobic training in patients with spinal and bulbar muscular atrophy (Kennedy disease) , 2009, Neurology.

[15]  K. Fischbeck,et al.  Mitochondrial abnormalities in spinal and bulbar muscular atrophy , 2008, Human molecular genetics.

[16]  A. Gliozzi,et al.  The role of the polyglutamine tract in androgen receptor , 2008, The Journal of Steroid Biochemistry and Molecular Biology.

[17]  B. Wirth,et al.  Histone deacetylase inhibitors: possible implications for neurodegenerative disorders , 2008, Expert opinion on investigational drugs.

[18]  K. Fischbeck,et al.  Neurological effects of high-dose idebenone in patients with Friedreich's ataxia: a randomised, placebo-controlled trial , 2007, The Lancet Neurology.

[19]  S. Tsuji,et al.  CAG repeat disorder models and human neuropathology: similarities and differences , 2007, Acta Neuropathologica.

[20]  Howard Schulman,et al.  Global changes to the ubiquitin system in Huntington's disease , 2007, Nature.

[21]  K. Fischbeck,et al.  Akt blocks ligand binding and protects against expanded polyglutamine androgen receptor toxicity. , 2007, Human molecular genetics.

[22]  Fumiaki Tanaka,et al.  CHIP Overexpression Reduces Mutant Androgen Receptor Protein and Ameliorates Phenotypes of the Spinal and Bulbar Muscular Atrophy Transgenic Mouse Model , 2007, The Journal of Neuroscience.

[23]  G. Sobue,et al.  Pathogenesis and molecular targeted therapy of spinal and bulbar muscular atrophy , 2007, Neuropathology and applied neurobiology.

[24]  G. Sobue,et al.  ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype via degradation of androgen receptor , 2007, Nature Medicine.

[25]  D. Merry,et al.  Soluble Androgen Receptor Oligomers Underlie Pathology in a Mouse Model of Spinobulbar Muscular Atrophy* , 2007, Journal of Biological Chemistry.

[26]  G. Sobue,et al.  Reversible Disruption of Dynactin 1-Mediated Retrograde Axonal Transport in Polyglutamine-Induced Motor Neuron Degeneration , 2006, The Journal of Neuroscience.

[27]  K. Gruis,et al.  Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. , 2006, The Journal of clinical investigation.

[28]  G. Pigino,et al.  JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport , 2006, Nature Neuroscience.

[29]  G. Sobue,et al.  Pathogenesis, animal models and therapeutics in Spinal and bulbar muscular atrophy (SBMA) , 2006, Experimental Neurology.

[30]  G. Sobue,et al.  Modulation of Hsp90 function in neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein , 2006, Journal of Molecular Medicine.

[31]  G. Sobue,et al.  17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration , 2005, Nature Medicine.

[32]  Huiyi Wang,et al.  Castration Restores Function and Neurofilament Alterations of Aged Symptomatic Males in a Transgenic Mouse Model of Spinal and Bulbar Muscular Atrophy , 2004, The Journal of Neuroscience.

[33]  C. Ware,et al.  Androgen Receptor YAC Transgenic Mice Recapitulate SBMA Motor Neuronopathy and Implicate VEGF164 in the Motor Neuron Degeneration , 2004, Neuron.

[34]  B. Schmidt,et al.  Expression of X-linked bulbospinal muscular atrophy (Kennedy disease) in two homozygous women. , 2002, Neurology.

[35]  A. Munnich,et al.  Heart Hypertrophy and Function Are Improved by Idebenone in Friedreich's Ataxia , 2002, Free radical research.

[36]  K. Fischbeck,et al.  CREB-binding protein sequestration by expanded polyglutamine. , 2000, Human molecular genetics.

[37]  H. Krug,et al.  Cytoplasmic Localization and the Choice of Ligand Determine Aggregate Formation by Androgen Receptor with Amplified Polyglutamine Stretch , 2000, The Journal of cell biology.

[38]  N. Weigel,et al.  Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. , 1999, Human molecular genetics.

[39]  Y. Pan Clinical features of spinal and bulbar muscular atrophy , 2012 .

[40]  B. Gottlieb,et al.  Progress in spinobulbar muscular atrophy research: Insights into neuronal dysfunction caused by the polyglutamine-expanded androgen receptor , 2009, Neurotoxicity Research.

[41]  K. Fischbeck,et al.  Clinical features of spinal and bulbar muscular atrophy , 2009, Brain : a journal of neurology.

[42]  Boutillier Anne-Laurence,et al.  Chromatin acetylation status in the manifestation of neurodegenerative diseases: HDAC inhibitors as therapeutic tools. , 2007, Sub-cellular biochemistry.

[43]  G. Sobue,et al.  Therapeutic strategies for spinal and bulbar muscular atrophy (SBMA) , 2007 .

[44]  J. Uney,et al.  Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.