Robust learning approach for neuro-inspired nanoscale crossbar architecture

Scaling beyond CMOS require a new combination of computing paradigm and new devices. In this context, memristor are often considered as best candidate to implement efficiently synapses in hardware neural networks. In this article, we analyze the impact of memristor parameter variability. We build an analytical model of the global reliability at the crossbar level. It is based on a supervised learning method with multilayer and redundancy extensions. Comparisons with Monte Carlo simulations of small neural network validate our analytical model. It can be used to extrapolate directly the reliability of large-scale neural system. Our extrapolations show that high defect rate and important parameter variability can be handle efficiency with a moderate amount of redundancy.

[1]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[2]  E. Belhaire,et al.  Design and electrical simulation of on-chip neural learning based on nanocomponents , 2008 .

[3]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[4]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[5]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[6]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[7]  Steven M. Nowick,et al.  ACM Journal on Emerging Technologies in Computing Systems , 2010, TODE.

[8]  Shimeng Yu,et al.  Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory , 2011 .

[9]  A. S. Sadek,et al.  Fault-tolerant techniques for nanocomputers , 2002 .

[10]  F. Vallet,et al.  Robustness in Multilayer Perceptrons , 1993, Neural Computation.

[11]  T. Cao,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001 .

[12]  Jiale Liang,et al.  Cross-Point Memory Array Without Cell Selectors—Device Characteristics and Data Storage Pattern Dependencies , 2010, IEEE Transactions on Electron Devices.

[13]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[14]  A. Hall,et al.  Adaptive Switching Circuits , 2016 .

[15]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[16]  Konstantin K. Likharev,et al.  Defect‐tolerant nanoelectronic pattern classifiers , 2007, Int. J. Circuit Theory Appl..

[17]  J. Rogers,et al.  Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. , 2005, Small.

[18]  Jacques-Olivier Klein,et al.  Design and Modeling of a Neuro-Inspired Learning Circuit Using Nanotube-Based Memory Devices , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Weisheng Zhao,et al.  Two‐Terminal Carbon Nanotube Programmable Devices for Adaptive Architectures , 2010, Advanced materials.

[20]  Mehdi B. Tahoori Defect Tolerance in Crossbar Array Nano-Architectures , 2008 .

[21]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[22]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[23]  Wei Wu,et al.  A hybrid nanomemristor/transistor logic circuit capable of self-programming , 2009, Proceedings of the National Academy of Sciences.

[24]  C. Lieber,et al.  Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems , 2003, Science.

[25]  G. Snider,et al.  Self-organized computation with unreliable, memristive nanodevices , 2007 .

[26]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[27]  Yoon-Hwa Choi,et al.  A two-level redundancy scheme for enhancing scalability of molecular-based crossbar memories , 2004, 4th IEEE Conference on Nanotechnology, 2004..

[28]  M. Pickett,et al.  A scalable neuristor built with Mott memristors. , 2013, Nature materials.

[29]  C. Gamrat,et al.  Nanotube devices based crossbar architecture: toward neuromorphic computing , 2010, Nanotechnology.

[30]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[31]  Il Song Han Mixed-signal neuron-synapse implementation for large-scale neural network , 2006, Neurocomputing.

[32]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[33]  G. Seroussi,et al.  Defect-tolerant interconnect to nanoelectronic circuits: internally redundant demultiplexers based on error-correcting codes , 2005 .

[34]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry, Expanded Edition , 1987 .

[35]  Jacques-Olivier Klein,et al.  Hight fault tolerance in neural crossbar , 2010, 5th International Conference on Design & Technology of Integrated Systems in Nanoscale Era.

[36]  John J. Hopfield,et al.  Simple 'neural' optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit , 1986 .

[37]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[38]  Jacques-Olivier Klein,et al.  Robust neural logic block (NLB) based on memristor crossbar array , 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures.

[39]  Damien Querlioz,et al.  Learning with memristive devices: How should we model their behavior? , 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures.

[40]  H. Hwang,et al.  Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device , 2011, Nanotechnology.

[41]  Jacques-Olivier Klein,et al.  Cross-Point Architecture for Spin-Transfer Torque Magnetic Random Access Memory , 2012, IEEE Transactions on Nanotechnology.

[42]  Konstantin K. Likharev,et al.  Defect-tolerant nanoelectronic pattern classifiers: Research Articles , 2007 .

[43]  W. Lu,et al.  High-density Crossbar Arrays Based on a Si Memristive System , 2008 .

[44]  Byung Joon Choi,et al.  Engineering nonlinearity into memristors for passive crossbar applications , 2012 .

[45]  R. Waser Resistive non-volatile memory devices (Invited Paper) , 2009 .