Credible classification for environmental problems
暂无分享,去创建一个
[1] Enrico Fagiuoli,et al. Tree-Based Credal Networks for Classification , 2003, Reliab. Comput..
[2] J. Huisman. The Netherlands , 1996, The Lancet.
[3] Isaac Levi,et al. The Enterprise Of Knowledge , 1980 .
[4] Philippe Nivlet,et al. Interval Discriminant Analysis: An Efficient Method to Integrate Errors In Supervised Pattern Recognition , 2001, ISIPTA.
[5] P. Walley. Inferences from Multinomial Data: Learning About a Bag of Marbles , 1996 .
[6] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[7] Marco Zaffalon,et al. Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data , 2003, Artif. Intell. Medicine.
[8] Marco Zaffalon,et al. Statistical inference of the naive credal classifier , 2001, ISIPTA.
[9] Charles F. Manski,et al. Censoring of Outcomes and Regressors Due to Survey Nonresponse: Identification and estimation Using Weights and Imputations , 1998 .
[10] P. Laplace. Théorie analytique des probabilités , 1995 .
[11] Ian H. Witten,et al. Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.
[12] P. Walley. Statistical Reasoning with Imprecise Probabilities , 1990 .
[13] Serafín Moral,et al. Maximum of Entropy in Credal Classification , 2003, ISIPTA.
[14] Ron Kohavi,et al. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.
[15] Wilfred Perks,et al. Some observations on inverse probability including a new indifference rule , 1947 .
[16] David G. Stork,et al. Pattern Classification , 1973 .
[17] C. Manski. Partial Identification of Probability Distributions , 2003 .
[18] Joel L. Horowitz,et al. Imprecise identification from incomplete data , 2001, ISIPTA.
[19] David J. Spiegelhalter,et al. Sequential Model Criticism in Probabilistic Expert Systems , 1993, IEEE Trans. Pattern Anal. Mach. Intell..
[20] Paola Sebastiani,et al. c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. Robust Learning with Missing Data , 2022 .
[21] Charles F. Manski,et al. 3 The selection problem in econometrics and statistics , 1993 .
[22] Peter Reichert. On the necessity of using imprecise probabilities for modelling environmental systems , 1997 .
[23] Serafín Moral,et al. Building classification trees using the total uncertainty criterion , 2003, Int. J. Intell. Syst..
[24] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[25] Paola Sebastiani,et al. Robust Bayes classifiers , 2001, Artif. Intell..
[26] L. M. M.-T.. Theory of Probability , 1929, Nature.
[27] Nicole A. Lazar,et al. Statistical Analysis With Missing Data , 2003, Technometrics.
[28] Elmar Kriegler,et al. Climate Projections for the 21st Century Using Random Sets , 2003, ISIPTA.
[29] Marco Zaffalon. The naive credal classifier , 2002 .
[30] Ron Kohavi,et al. MLC++: a machine learning library in C++ , 1994, Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94.
[31] Marco Zaffalon. A Credal Approach to Naive Classification , 1999, ISIPTA.
[32] Richard O. Duda,et al. Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.
[33] Marco Zaffalon. Exact credal treatment of missing data , 2002 .