Critical ideals, minimum rank and zero forcing number

There are profound relations between the zero forcing number and minimum rank of a graph. We study the relation of both parameters with a third one, the algebraic co-rank; that is defined as the largest $i$ such that the $i$-th critical ideal is trivial. This gives a new perspective for bounding and computing these three graph parameters.

[1]  Charles R. Johnson,et al.  Estimation of the maximum multiplicity of an eigenvalue in terms of the vertex degrees of the graph of a matrix , 2002 .

[2]  Raphael Loewy,et al.  The minimum rank problem over the finite field of order 2 : Minimum rank 3 , 2006 .

[3]  Carlos A. Alfaro,et al.  Graphs with two trivial critical ideals , 2014, Discret. Appl. Math..

[4]  Criel Merino,et al.  The chip-firing game , 2005, Discret. Math..

[5]  L. Hogben,et al.  Techniques for determining the minimum rank of a small graph , 2010 .

[6]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[7]  W. Haemers Zero forcing sets and minimum rank of graphs , 2008 .

[8]  L. Hogben Minimum Rank Problems , 2010 .

[9]  Sean V. Droms,et al.  Minimum rank of a graph over an arbitrary field , 2007 .

[10]  Carlos A. Alfaro,et al.  On the sandpile group of the cone of a graph , 2010, 1004.3321.

[11]  C. E. Valencia,et al.  On the critical ideals of graphs , 2012, 1205.3105.

[12]  Carlos A. Alfaro,et al.  Critical ideals of signed graphs with twin vertices , 2017, Adv. Appl. Math..

[13]  Charles R. Johnson,et al.  The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree , 1999 .

[14]  Carlos A. Alfaro,et al.  Digraphs with at most one trivial critical ideal , 2017, 1703.08621.

[15]  L. Hogben,et al.  UNIVERSALLY OPTIMAL MATRICES AND FIELD INDEPENDENCE OF THE MINIMUM RANK OF A GRAPH , 2009 .

[16]  Carlos A. Alfaro Graphs with real algebraic co-rank at most two , 2018, Linear Algebra and its Applications.

[17]  C. E. Valencia,et al.  Critical ideals of trees , 2015, 1504.06239.

[18]  Hein van der Holst,et al.  Graphs whose minimal rank is two : the finite fields case , 2005 .

[19]  Leslie Hogben,et al.  SPECTRAL GRAPH THEORY AND THE INVERSE EIGENVALUE PROBLEM OF A GRAPH , 2005 .

[20]  Shaun M. Fallat,et al.  On the minimum rank of the join of graphs and decomposable graphs , 2007 .

[21]  R. Loewy,et al.  GRAPHS WHOSE MINIMAL RANK IS TWO , 2004 .

[22]  W. Ching Linear equations over commutative rings , 1977 .

[23]  Carlos A. Alfaro,et al.  Small clique number graphs with three trivial critical ideals , 2013, 1311.5927.