The general Randić index of trees with given number of pendent vertices

The general Randic index of a graph G is defined as R α ( G ) = ź u v ź E ( G ) ( d ( u ) d ( v ) ) α , where d(u) denotes the degree of a vertex u in G and α is a real number. In this paper, we determine the maximum general Randic indices of trees and chemical trees with n vertices and k pendent vertices for 4 ź k ź ź n + 2 3 ź and α0 ź α < 0, where α 0 ź - 0.5122 is the unique non-zero root of the equation 6 ź 4 α - 20 ź 9 α + 10 ź 12 α - 16 α + 5 ź 24 α = 0 . The corresponding extremal graphs are also characterized.

[1]  D. Vukicevic,et al.  Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges , 2009 .

[2]  S. Unger Molecular Connectivity in Structure–activity Analysis , 1987 .

[3]  N. Trinajstic Xueliang Li, Ivan Gutman: Mathematical Aspects of Randić-type Molecular Structure Descriptors , 2006 .

[4]  Bo Zhou,et al.  The Kirchhoff indices and the matching numbers of unicyclic graphs , 2016, Appl. Math. Comput..

[5]  Ioan Tomescu,et al.  Maximum General Sum-Connectivity Index for Trees with Given Independence Number 1 , 2014 .

[6]  Mei Lu,et al.  Maximum Randić index on Trees with k-pendant Vertices , 2007 .

[7]  Huiqing Liu,et al.  Trees of extremal connectivity index , 2006, Discret. Appl. Math..

[8]  Indra Rajasingh,et al.  Computing Szeged Index of Certain Nanosheets Using Partition Technique , 2014 .

[9]  Bo Zhou,et al.  On general sum-connectivity index , 2010 .

[10]  Bicyclic graphs with maximum general Randic index , 2007 .

[11]  Mikhail Goubko,et al.  ABC Index of Trees with Fixed Number of Leaves , 2015 .

[12]  Fengwei Li,et al.  The general connectivity indices of fluoranthene-type benzenoid systems , 2016, Appl. Math. Comput..

[13]  The exponent in the general Randić index , 2008 .

[14]  Dieter Rautenbach,et al.  A Linear-programming Approach to the Generalized Randic Index , 2003, Discret. Appl. Math..

[15]  Yongtang Shi,et al.  Minimum General Randic Index on Chemical Trees with Given Order and Number of Pendent Vertices , 2008 .

[16]  Xueliang Li,et al.  Sharp Bounds for the General Randi c Index , 2003 .

[17]  Bo Zhou,et al.  On a novel connectivity index , 2009 .

[18]  Mikhail Goubko,et al.  Minimizing Wiener Index for Vertex-Weighted Trees with Given Weight and Degree Sequences , 2015, 1502.01216.

[19]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[20]  Xiaodan Chen,et al.  Conjugated trees with minimum general Randic index , 2009, Discret. Appl. Math..

[21]  Juan Rada,et al.  Vertex-Degree-Based Topological Indices Over Graphs , 2014 .

[22]  M. Randic Characterization of molecular branching , 1975 .

[23]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[24]  A. Balaban,et al.  Topological Indices and Related Descriptors in QSAR and QSPR , 2003 .

[25]  Damir Vukicevic Which generalized Randic indices are suitable measures of molecular branching? , 2010, Discret. Appl. Math..

[27]  Kinkar Ch. Das,et al.  Comparison between atom-bond connectivity indices of graphs , 2016 .

[28]  Xueliang Li,et al.  A Survey on the Randic Index , 2008 .

[29]  N. Habibi,et al.  Maximum and Second Maximum of Randi c Index in the Class of Tricyclic Graphs , 2015 .

[30]  Shaun M. Fallat,et al.  On the normalized Laplacian energy and general Randić index R-1 of graphs , 2010 .

[31]  Ernesto Estrada,et al.  AN ATOM-BOND CONNECTIVITY INDEX : MODELLING THE ENTHALPY OF FORMATION OF ALKANES , 1998 .

[32]  Kinkar Chandra Das,et al.  Graphs with fixed number of pendent vertices and minimal Zeroth-order general Randić index , 2015, Appl. Math. Comput..

[33]  Yiyang Li,et al.  The asymptotic value of the zeroth-order Randić index and sum-connectivity index for trees , 2015, Appl. Math. Comput..

[34]  Jose Maria Sigarreta,et al.  Spectral properties of geometric-arithmetic index , 2016, Appl. Math. Comput..

[35]  Lingping Zhong General Randic Index on Trees with a Given Order and Diameter , 2009 .

[36]  Yongtang Shi,et al.  Note on two generalizations of the Randić index , 2015, Appl. Math. Comput..

[37]  Pierre Hansen,et al.  Variable Neighborhood Search for Extremal Graphs, 6. Analyzing Bounds for the Connectivity Index , 2001, J. Chem. Inf. Comput. Sci..

[38]  Boris Furtula,et al.  On extremal Zagreb indices of trees with given domination number , 2016, Appl. Math. Comput..

[39]  Lemont B. Kier,et al.  The Meaning of Molecular Connectivity: A Bimolecular Accessibility Model* , 2002 .

[40]  N. Trinajstic,et al.  On the Harary index for the characterization of chemical graphs , 1993 .

[41]  Kinkar Chandra Das,et al.  Comparison between the zeroth-order Randić index and the sum-connectivity index , 2016, Appl. Math. Comput..

[42]  Boris Furtula,et al.  On Zagreb Indices and Coindices , 2015 .

[43]  Martin Knor,et al.  Sandwiching the (generalized) Randić index , 2015, Discret. Appl. Math..

[44]  Xueliang Li,et al.  Trees with a given order and matching number that have maximum general Randic index , 2010, Discret. Math..

[45]  Béla Bollobás,et al.  Graphs of Extremal Weights , 1998, Ars Comb..

[46]  Kinkar Chandra Das,et al.  Comparison between the Szeged index and the eccentric connectivity index , 2015, Discret. Appl. Math..

[47]  Eric Ould Dadah Andriantiana,et al.  Maximum Wiener Index of Trees With Given Segment Sequence , 2016 .

[48]  Xueliang Li,et al.  Corrections of proofs for Hansen and Mélot's two theorems , 2007, Discret. Appl. Math..

[49]  M. Rodr,et al.  On the Geometric{Arithmetic Index , 2015 .