Zinc: biological functions and coordination motifs

[1]  B. Vallee,et al.  Short and long spacer sequences and other structural features of zinc binding sites in zinc enzymes , 1989, FEBS letters.

[2]  P E Wright,et al.  Three-dimensional solution structure of a single zinc finger DNA-binding domain. , 1989, Science.

[3]  J. Frère,et al.  Structure of a Zn2+-containing D-alanyl-D-alanine-cleaving carboxypeptidase at 2.5 Å resolution , 1982, Nature.

[4]  W. Lipscomb,et al.  Structure determination and refinement of bovine lens leucine aminopeptidase and its complex with bestatin. , 1992, Journal of molecular biology.

[5]  T. Steitz,et al.  Structural basis for the 3′‐5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. , 1991, The EMBO journal.

[6]  B. Vallee,et al.  Zinc coordination, function, and structure of zinc enzymes and other proteins. , 1990, Biochemistry.

[7]  G. A. Thompson,et al.  Leucine aminopeptidase (bovine lens). Effect of pH on the relative binding of Zn2+ and Mg2+ to and on activation of the enzyme. , 1976, The Journal of biological chemistry.

[8]  L. Hood,et al.  Zinc-dependent structure of a single-finger domain of yeast ADR1. , 1988, Science.

[9]  C. Cori James B. Sumner and the chemical nature of enzymes , 1981 .

[10]  D. Hamer,et al.  Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein , 1988, Cell.

[11]  B. Vallee,et al.  Active-site zinc ligands and activated H2O of zinc enzymes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[12]  T. Pan,et al.  Sequential assignments of the 1H NMR resonances of Zn(II)2 and 113Cd(II)2 derivatives of the DNA-binding domain of the GAL4 transcription factor reveal a novel structural motif for specific DNA recognition. , 1991, Biochemistry.

[13]  Aaron Klug,et al.  ‘Zinc fingers’: a novel protein motif for nucleic acid recognition , 1987 .

[14]  Jeremy M. Berg,et al.  Zinc-finger proteins , 1993 .

[15]  F. Gurd,et al.  Complex formation between metallic cations and proteins, peptides and amino acids. , 1956, Advances in protein chemistry.

[16]  P Argos,et al.  A model for the tertiary structure of the 28 residue DNA-binding motif ('zinc finger') common to many eukaryotic transcriptional regulatory proteins. , 1988, Protein engineering.

[17]  D. Hazuda,et al.  Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. , 1983, The Journal of biological chemistry.

[18]  N. Xuong,et al.  Refined crystal structure of Cd, Zn metallothionein at 2.0Åresolution , 1991 .

[19]  J. Berg,et al.  Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[20]  K. Yamamoto,et al.  Identification of the metal coordinating residues in the DNA binding domain of the glucocorticoid receptor by 113Cd‐1H heteronuclear NMR spectroscopy , 1991, FEBS letters.

[21]  J. Hermes,et al.  Characterization of zinc-binding sites in human stromelysin-1: stoichiometry of the catalytic domain and identification of a cysteine ligand in the proenzyme. , 1992, Biochemistry.

[22]  P. Wright,et al.  Zinc is required for folding and binding of a single zinc finger to DNA , 1991, FEBS letters.

[23]  A. Klug,et al.  EXAFS study of the zinc-binding sites in the protein transcription factor IIIA , 1986, Nature.

[24]  E. E. Kim,et al.  Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. , 1991, Journal of molecular biology.

[25]  B. Vallee,et al.  New perspective on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. , 1993, Biochemistry.

[26]  S. Bass,et al.  Zinc mediation of the binding of human growth hormone to the human prolactin receptor. , 1990, Science.

[27]  J. Gustafsson,et al.  1H NMR studies of the glucocorticoid receptor DNA-binding domain: sequential assignments and identification of secondary structure elements. , 1990, Biochemistry.

[28]  K. Yamamoto,et al.  Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA , 2003, Nature.

[29]  F A Quiocho,et al.  Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. , 1991, Science.

[30]  J. Haeggström,et al.  Leukotriene A4 hydrolase: determination of the three zinc-binding ligands by site-directed mutagenesis and zinc analysis. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[31]  B. Vallee,et al.  The metallobiochemistry of zinc enzymes. , 2006, Advances in enzymology and related areas of molecular biology.

[32]  L. Hood,et al.  Spectroscopic studies of wild-type and mutant "zinc finger" peptides: determinants of domain folding and structure. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[33]  G. Murphy,et al.  Biochemical characterization of matrilysin. Activation conforms to the stepwise mechanisms proposed for other matrix metalloproteinases. , 1992, Biochemistry.

[34]  D. Bredt,et al.  Tat protein from human immunodeficiency virus forms a metal-linked dimer. , 1988, Science.

[35]  P. Sadler,et al.  113Cd NMR studies of reconstituted seven-cadmium metallothionein: evidence for structural flexibility. , 1985, Biochemistry.

[36]  D. Suck,et al.  Crystal structure of Penicillium citrinum P1 nuclease at 2.8 A resolution. , 1991, The EMBO journal.

[37]  N. Dixon,et al.  Letter: Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel? , 1975, Journal of the American Chemical Society.

[38]  P. Wright,et al.  Specific interaction of the first three zinc fingers of TFIIIA with the internal control region of the Xenopus 5 S RNA gene. , 1992, Journal of molecular biology.

[39]  K. Fridborg,et al.  Crystal structure of human erythrocyte carbonic anhydrase B. Three-dimensional structure at a nominal 2.2-A resolution. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[40]  D. Apirion,et al.  Initiation, processing and termination of ribosomal RNA from a hybrid 5 S ribosomal RNA gene in a plasmid. , 1983, Journal of molecular biology.

[41]  J. Haeggström,et al.  Leukotriene A4 hydrolase: an epoxide hydrolase with peptidase activity. , 1990, Biochemical and biophysical research communications.

[42]  J. L. Crawford,et al.  Crystal and molecular structures of native and CTP-liganded aspartate carbamoyltransferase from Escherichia coli. , 1982, Journal of molecular biology.

[43]  H. Birkedal‐Hansen,et al.  Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a "cysteine switch" mechanism for activation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Sequence‐specific [1H]NMR resonance assignments and secondary structure identification for 1‐ and 2‐zinc finger constructs from SWI5 , 1990, FEBS letters.

[45]  J. Jenkins,et al.  Crystal structure of neutral protease from Bacillus cereus refined at 3.0 A resolution and comparison with the homologous but more thermostable enzyme thermolysin. , 1988, Journal of molecular biology.

[46]  B. Vallee,et al.  Functional zinc-binding motifs in enzymes and DNA-binding proteins. , 1992, Faraday discussions.

[47]  D. J. Strydom,et al.  Astacus protease, a zinc metalloenzyme , 1988 .

[48]  K. Wüthrich,et al.  Three-dimensional structure of human [113Cd7]metallothionein-2 in solution determined by nuclear magnetic resonance spectroscopy. , 1990, Journal of molecular biology.

[49]  D. Auld,et al.  Fluorescent oligopeptide substrates for kinetic characterization of the specificity of Astacus protease. , 1990, Biochemistry.

[50]  Michael Carey,et al.  DNA recognition by GAL4: structure of a protein-DNA complex , 1992, Nature.

[51]  T. Pan,et al.  Cadmium-113 NMR studies of the DNA binding domain of the mammalian glucocorticoid receptor. , 1990, Biochemistry.

[52]  B. Vallee,et al.  Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. Berg,et al.  Metal-dependent folding of a single zinc finger from transcription factor IIIA. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[54]  B. Vallee,et al.  Zinc transfer from transcription factor IIIA fingers to thionein clusters. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Edward Hough,et al.  High-resolution (1.5 Å) crystal structure of phospholipase C from Bacillus cereus , 1989, Nature.

[56]  A. Pastore,et al.  NMR and molecular dynamics studies of the mKr2 'zinc finger'. , 1990, European journal of biochemistry.

[57]  L Järup,et al.  Crystal structure of human carbonic anhydrase C. , 1972, Nature: New biology.

[58]  R. Huber,et al.  Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases , 1992, Nature.

[59]  N. Pavletich,et al.  Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A , 1991, Science.

[60]  D. Phillips,et al.  An X-ray-crystallographic study of beta-lactamase II from Bacillus cereus at 0.35 nm resolution. , 1987, The Biochemical journal.

[61]  B. Vallee,et al.  Metallothionein: historical review and perspectives. , 1979, Experientia. Supplementum.

[62]  M. James,et al.  Rat submaxillary gland serine protease, tonin. Structure solution and refinement at 1.8 A resolution. , 1987, Journal of molecular biology.

[63]  F A Quiocho,et al.  Carboxypeptidase A: a protein and an enzyme. , 1971, Advances in protein chemistry.

[64]  J. Sumner THE ISOLATION AND CRYSTALLIZATION OF THE ENZYME UREASE PRELIMINARY PAPER , 1926 .

[65]  J. Schwabe,et al.  Solution structure of the DNA-binding domain of the oestrogen receptor. , 1990, Nature.

[66]  J. Keeler,et al.  Polypeptide—metal cluster connectivities in Cd(II) GAL4 , 1991, FEBS letters.

[67]  M F Schmid,et al.  Structure of carboxypeptidase B at 2-8 A resolution. , 1976, Journal of molecular biology.

[68]  B. Vallee,et al.  Cocatalytic zinc motifs in enzyme catalysis. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[69]  B P Schoenborn,et al.  Three-dimensional structure of thermolysin. , 1972, Nature: New biology.

[70]  B. Vallee,et al.  Metallothionein: a cadmium and zinc-containign protein from equine renal cortex. II. Physico-chemical properties. , 1961, The Journal of biological chemistry.

[71]  K. Flaherty,et al.  Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution. , 1993, The Journal of biological chemistry.