Optical amplification and lasing by stimulated Raman scattering in silicon waveguides

Achieving light amplification and lasing in silicon is one of most challenging goals in silicon-based optoelectronics. As a nonlinear optical effect, stimulated Raman scattering (SRS) provides a means to generate optical gain in silicon. Recent results of a nonlinear optics approach to optical amplification and lasing in silicon at the Photonics Technology Laboratory of Intel Corporation are reviewed. This paper starts with the description of the underlying physics related to the Raman scattering in silicon and experimental results of SRS in silicon waveguides. Then, it is shown that nonlinear optical absorption associated with the two-photon absorption (TPA)-induced free carrier absorption (FCA) is a dominant loss mechanism limiting optical gain in a silicon waveguide in addition to the linear optical scattering loss due to the waveguide sidewall roughness. The design and fabrication of a low-loss silicon waveguide containing a p-i-n diode to reduce the nonlinear optical loss are described. It is demonstrated that the free carrier density inside the waveguide can be reduced significantly with a reverse bias of the p-i-n diode. As a result, net optical gain in a silicon waveguide is achieved. The design, fabrication, and characterization of a Raman silicon laser are also described. Both pulsed and continuous-wave (CW) lasing in silicon are achieved using SRS

[1]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[2]  R. Claps,et al.  Wavelength conversion and light amplification in silicon waveguides , 2004, First IEEE International Conference on Group IV Photonics, 2004..

[3]  R. Soref,et al.  All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm , 1986 .

[4]  Y. Vlasov,et al.  Raman amplification in ultrasmall silicon-on-insulator wire waveguides. , 2004, Optics express.

[5]  Chinlon Lin,et al.  A tunable multiple Stokes cw fiber Raman oscillator , 1977 .

[6]  Pieter G. Kik,et al.  Strong exciton-erbium coupling in Si nanocrystal-doped SiO2 , 2000 .

[7]  A. Knights,et al.  Silicon Photonics: An Introduction , 2004 .

[8]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[9]  Kazuo Saitoh,et al.  Visible photoluminescence in Si+‐implanted silica glass , 1994 .

[10]  Bahram Jalali,et al.  Observation of Raman emission in silicon waveguides at 1.54 microm. , 2002, Optics express.

[11]  Mario J. Paniccia,et al.  Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide , 2004 .

[12]  Hak Kyu Lee,et al.  Cascaded Raman fibre laser operating at 1.48 µm , 1999 .

[13]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[14]  David J. Lockwood Pavesi,et al.  Silicon Fundamentals for Photonics Applications , 2004 .

[15]  A. Vonsovici,et al.  The single-mode condition for semiconductor rib waveguides with large cross section , 1998 .

[16]  Mihaela Dinu,et al.  Third-order nonlinearities in silicon at telecom wavelengths , 2003 .

[17]  Salvatore Lombardo,et al.  Room‐temperature luminescence from Er‐implanted semi‐insulating polycrystalline silicon , 1993 .

[18]  Fabio Iacona,et al.  Correlation between luminescence and structural properties of Si nanocrystals , 2000 .

[19]  C.R. Doerr,et al.  Observation of WDM crosstalk in passive semiconductor waveguides , 2001, IEEE Photonics Technology Letters.

[20]  Ernst Brinkmeyer,et al.  Analysis of Raman lasing characteristics in silicon-on-insulator waveguides. , 2004, Optics express.

[21]  G. Vareille,et al.  Numerical optimisation of power conversion efficiency in 1480 nm multi-Stokes Raman fibre lasers , 1998 .

[22]  Salvatore Coffa,et al.  Excitation and nonradiative deexcitation processes of Er 3 + in crystalline Si , 1998 .

[23]  Ansheng Liu,et al.  Lossless optical modulation in a silicon waveguide using stimulated Raman scattering. , 2005, Optics express.

[24]  L. D. Negro,et al.  Light amplification in silicon nanocrystals by pump and probe transmission measurements , 2004 .

[25]  M. Räsänen,et al.  Optical gain in Si/SiO2 lattice: Experimental evidence with nanosecond pulses , 2001 .

[26]  G. Dehlinger,et al.  Intersubband electroluminescence from silicon-based quantum cascade structures. , 2000, Science.

[27]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[28]  Amnon Yariv,et al.  Theory of cw Raman oscillation in optical fibers , 1979 .

[29]  I. Cristiani,et al.  Numerical modeling and optimization of cascaded CW Raman fiber lasers , 2000, IEEE Journal of Quantum Electronics.

[30]  M. Paniccia,et al.  Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. , 2004, Optics express.

[31]  Philippe M. Fauchet,et al.  Ordering and self-organization in nanocrystalline silicon , 2000, Nature.

[32]  George I. Stegeman,et al.  Nonlinear absorption in a GaAs waveguide just above half the band gap , 1994 .

[33]  Richard Corkish,et al.  Very efficient light emission from bulk crystalline silicon , 2003 .

[34]  P. Temple,et al.  Multiphonon Raman Spectrum of Silicon , 1973 .

[35]  Oded Cohen,et al.  Recent development in silicon photonics: 2.5 Gb/s silicon optical modulator and silicon Raman laser , 2005, SPIE OPTO.

[36]  Kunji Chen,et al.  Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum‐well structures , 1992 .

[37]  M. Morse,et al.  High speed silicon Mach-Zehnder modulator. , 2005, Optics express.

[38]  G. Shao,et al.  An efficient room-temperature silicon-based light-emitting diode , 2001, Nature.

[39]  Maria Miritello,et al.  Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices , 2002 .

[40]  B. Jalali,et al.  Wavelength conversion in silicon using Raman induced four-wave mixing , 2004 .

[41]  Kevin P. Homewood,et al.  Light from Si via dislocation loops , 2005 .

[42]  Alexander Fang,et al.  Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. , 2005, Optics express.

[43]  Elsa Garmire,et al.  Criteria for optical bistability in a lossy saturating Fabry-Perot , 1989 .

[44]  Lorenzo Pavesi,et al.  Dynamics of stimulated emission in silicon nanocrystals , 2003 .

[45]  Wei Li,et al.  Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices , 1998 .

[46]  H. Tsang,et al.  Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides , 2004 .

[47]  John P. Russell,et al.  RAMAN SCATTERING IN SILICON , 1965 .

[48]  Salvatore Coffa,et al.  Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes , 1997 .

[49]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[50]  G. G. Qin,et al.  Visible electroluminescence from semitransparent Au film/extra thin Si‐rich silicon oxide film/p‐Si structure , 1995 .

[51]  I. Day,et al.  Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength , 2002 .

[52]  Bahram Jalali,et al.  Optimization of Si/sub 1-x/Ge/sub x//Si waveguide photodetectors operating at /spl lambda/=1.3 /spl mu/m , 1996 .

[53]  S. Nakashima,et al.  Determination of crystallographic orientations in silicon films by Raman‐microprobe polarization measurements , 1989 .

[54]  Se-Young Seo,et al.  Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide , 2001 .

[55]  L. D. Negro,et al.  Stimulated emission in nanocrystalline silicon superlattices , 2003 .

[56]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[57]  Harry A. Atwater,et al.  Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation , 1998 .

[58]  Volker Lehmann,et al.  Porous silicon formation: A quantum wire effect , 1991 .

[59]  Gianlorenzo Masini,et al.  Ge-on-Si approaches to the detection of near-infrared light , 1999 .

[60]  B. Jalali,et al.  Observation of stimulated Raman amplification in silicon waveguides , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[61]  Michal Lipson,et al.  Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides. , 2004, Optics express.

[62]  Keiichi Yamamoto,et al.  1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+ , 1997 .

[63]  T. R. Hart,et al.  Temperature Dependence of Raman Scattering in Silicon , 1970 .

[64]  Lorenzo Pavesi,et al.  Optical gain in silicon nanocrystals , 2001 .

[65]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[66]  R. Soref,et al.  Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2/ , 1991 .

[67]  Hon Ki Tsang,et al.  Efficient Raman amplification in silicon-on-insulator waveguides , 2004 .

[68]  R. K. Chang,et al.  Spontaneous-Raman-Scattering Efficiency and Stimulated Scattering in Silicon , 1970 .