Maximum likelihood estimation of synchronous machine parameters from standstill time response data

This paper presents a systematic approach for identification of a three-phase salient-pole synchronous machine rated at 5 kVA from standstill time-domain data. Machine time constant models and the equivalent circuit models are identified and their parameters are estimated. The initialization of the estimated parameters is achieved by the Laplace transformation of the recorded standstill time-response data and the derivation of the well-known operational inductances. The estimation is performed using the Maximum Likelihood algorithm. Based on the best estimated equivalent circuit models, simulation studies using the measured on-line dynamic responses are performed to validate the identified machine models. >

[1]  A.B.J. Reece,et al.  The D.c. Decay Test for Determining Synchronous Machine Parameters: Measurement and Simulation , 1989, IEEE Power Engineering Review.

[2]  L. N. Hannett,et al.  Determination of synchronous machine stator and field leakage inductances from standstill frequency response tests , 1988 .

[3]  L. G. Meng,et al.  Frequency domain-based methods to predict turbogenerator transients with particular emphasis on the field current , 1989 .

[4]  I. M. Canay,et al.  Causes of Discrepancies on Calculation of Rotor Quantities and Exact Equivalent Diagrams of the Synchronous Machine , 1969 .

[5]  F.P. de Mello,et al.  Derivation of synchronous machine parameters from tests , 1977, IEEE Transactions on Power Apparatus and Systems.

[6]  H. Akaike A new look at the statistical model identification , 1974 .

[7]  N. E. Nilsson,et al.  Synchronous generator capability curve testing and evaluation , 1994 .

[8]  Karl Johan Åström Maximum likelihood and prediction error methods , 1980, Autom..

[9]  Massimo D'Apuzzo,et al.  Measurement problems arising from the use of a recursive algorithm for model identification of electrical systems , 1992 .

[10]  Jr. J.L. Kirtley On turbine-generator rotor equivalent circuits , 1994 .

[11]  Ali Keyhani,et al.  Maximum likelihood estimation of generator stability constants using SSER test data , 1991 .

[12]  K. Åström,et al.  Uniqueness of the maximum likelihood estimates of the parameters of an ARMA model , 1974 .

[13]  I. Kamwa,et al.  A frequency-domain maximum likelihood estimation of synchronous machine high-order models using SSFR test data , 1992 .

[14]  P. L. Dandeno,et al.  Development of Detailed Turbogenerator Equivalent Circuits from Standstill Frequency Response Measurements , 1981 .

[15]  N. E. Nilsson,et al.  Evaluating the Service Degradation of Large Hydrogen Cooled Generator Rotor Fields , 1983, IEEE Transactions on Power Apparatus and Systems.

[16]  I. M. Canay,et al.  Determination of the model parameters of machines from the reactance operators x/sub d/(p), x/sub q/(p) (evaluation of standstill frequency response test) , 1993 .

[17]  J.W. Dougherty,et al.  Finite Element Modeling of Large Turbine Generators; Calculations Versus Load Test Data , 1981, IEEE Transactions on Power Apparatus and Systems.

[18]  Philippe Viarouge,et al.  Optimal estimation of the generalized operational impedances of synchronous machines from short-circuit tests , 1990 .

[19]  A.M. El-Serafi,et al.  A New Method for Determining the Armature Leakage Reactance of Synchronous Machines , 1991, IEEE Power Engineering Review.

[20]  R. C. Beck,et al.  Time-domain identification of synchronous machine parameters from simple standstill tests , 1990 .

[21]  M. J. Gibbard,et al.  Identification of synchronous machine parameters from standstill tests using recursive estimation with the bilinear operator , 1992 .

[22]  J. H. Fish,et al.  Saturation Functions for Synchronous Generators from Finite Elements , 1987, IEEE Power Engineering Review.

[23]  L. Hannett,et al.  Determination of Synchronous Machine Electrical Characteristics by Test , 1983, IEEE Transactions on Power Apparatus and Systems.

[24]  Philippe Viarouge,et al.  Identification of generalised models of synchronous machines from time-domain tests , 1991 .

[25]  J. A. Mallick,et al.  Modeling of Solid Rotor Turbogenerators Part I: Theory and Techniques , 1978, IEEE Transactions on Power Apparatus and Systems.

[26]  J. S. Edmonds,et al.  Trajectory sensitivity based identification of synchronous generator and excitation system parameters , 1988 .