Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements

High temperature thermal energy storage offers a huge energy saving potential in industrial applications such as solar energy, automotive, heating and cooling, and industrial waste heat recovery. However, certain requirements need to be faced in order to ensure an optimal performance, and to further achieve widespread deployment. In the present review, these requirements are identified for high temperature (>150°C) thermal energy storage systems and materials (both sensible and latent), and the scientific studies carried out meeting them are reviewed. Currently, there is a lack of data in the literature analysing thermal energy storage from both the systems and materials point of view. In the part 1 of this review more than 25 requirements have been found and classified into chemical, kinetic, physical and thermal (from the material point of view), and environmental, economic and technologic (form both the material and system point of view). The enhancements focused on the thermal conductivity are addressed in the Part 2 of this review due to their research significance and extension.

[1]  S. Khare,et al.  Selection of materials for high temperature sensible energy storage , 2013 .

[2]  N. K. Maheshwari,et al.  High temperature corrosion studies in molten salt-FLiNaK , 2014 .

[3]  L. Cabeza,et al.  Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques , 2016 .

[4]  Luisa F. Cabeza,et al.  Experimental characterization of a solid industrial by-product as material for high temperature sensible thermal energy storage (TES) , 2014 .

[5]  Li Shi,et al.  A eutectic mixture of galactitol and mannitol as a phase change material for latent heat storage , 2015 .

[6]  Weihuan Zhao Characterization of Encapsulated Phase Change Materials for Thermal Energy Storage , 2013 .

[7]  G. Flamant,et al.  Experimental hydrodynamic study of gas‐particle dense suspension upward flow for application as new heat transfer and storage fluid , 2015 .

[8]  D. Fernandes,et al.  Thermal energy storage: “How previous findings determine current research priorities” , 2012 .

[9]  Javier Rodríguez-Aseguinolaza,et al.  New Thermal Energy Storage Materials From Industrial Wastes: Compatibility of Steel Slags With the Most Common Heat Transfer Fluids , 2014 .

[10]  Takahiro Nomura,et al.  Technology of Latent Heat Storage for High Temperature Application: A Review , 2010 .

[11]  Weidong Yu,et al.  Thermal performance and flammability of phase change material for medium and elevated temperatures for textile application , 2014, Journal of Thermal Analysis and Calorimetry.

[12]  B. R. Dunbobbin,et al.  Corrosion in Molten Nitrate-Nitrite Salts , 1985 .

[13]  Luigi Torre,et al.  A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage , 2015, Nanoscale Research Letters.

[14]  Wei Wang,et al.  Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials , 2013 .

[15]  Valentina Salomoni,et al.  Effect of nylon fibres on mechanical and thermal properties of hardened concrete for energy storage systems , 2013 .

[16]  I. Lasanta,et al.  Corrosion of alumina‐forming austenitic steel in molten nitrate salts by gravimetric analysis and impedance spectroscopy , 2014 .

[17]  Donghyun Shin,et al.  Enhanced specific heat capacity of high-temperature molten salt-based nanofluids , 2013 .

[18]  Noel León,et al.  Latent Heat Based High Temperature Solar Thermal Energy Storage for Power Generation , 2014 .

[19]  Peiwen Li,et al.  Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems , 2015 .

[20]  Greg C. Glatzmaier,et al.  Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system , 2013 .

[21]  T. Lalk,et al.  Experimental investigation of the specific heat of a nitrate–alumina nanofluid for solar thermal energy storage systems , 2015 .

[22]  Ya-Ling He,et al.  Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material , 2015 .

[23]  E. Timofeeva,et al.  Nanofluids with encapsulated tin nanoparticles for advanced heat transfer and thermal energy storage , 2014 .

[24]  F. Bruno,et al.  Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems , 2012 .

[25]  K. Federsel,et al.  High-temperature and Corrosion Behavior of Nitrate Nitrite Molten Salt Mixtures Regarding their Application in Concentrating Solar Power Plants☆ , 2015 .

[26]  R. Seeniraj,et al.  Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs , 2008 .

[27]  Nagamany Nirmalakhandan,et al.  Renewable and sustainable approaches for desalination , 2010 .

[28]  A. Abhat Low temperature latent heat thermal energy storage: Heat storage materials , 1983 .

[29]  Luisa F. Cabeza,et al.  State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies , 2010 .

[30]  D. Banerjee,et al.  Enhancement of Heat Capacity of Nitrate Salts using Mica Nanoparticles , 2011 .

[31]  Xiang Wang,et al.  Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs) , 2015 .

[32]  Ibrahim Dincer,et al.  Heat Transfer in Food Cooling Applications , 1997 .

[33]  Alparslan Oztekin,et al.  Effect of internal void placement on the heat transfer performance – Encapsulated phase change material for energy storage , 2015 .

[34]  Edward S. Rubin,et al.  Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems , 2013 .

[35]  E. Fuentealba,et al.  Corrosion properties of a ternary nitrate/nitrite molten salt in concentrated solar technology , 2015 .

[36]  André Bontemps,et al.  Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances , 2011 .

[37]  Galactitol hexa stearate and galactitol hexa palmitate as novel solid–liquid phase change materials for thermal energy storage , 2011 .

[38]  Khamid Mahkamov,et al.  Solar energy storage using phase change materials , 2007 .

[39]  A. Bejan,et al.  Thermal Energy Storage: Systems and Applications , 2002 .

[40]  L. Cabeza,et al.  Experimental investigation of the effect of dynamic melting in a cylindrical shell-and-tube heat exchanger using water as PCM , 2017 .

[41]  C. Pan,et al.  Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity , 2014 .

[42]  Jian-jun Sun,et al.  Thermal reliability test of Al-34%Mg-6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling , 2007 .

[43]  W. Steinmann,et al.  Experimental demonstration of an active latent heat storage concept , 2016 .

[44]  A. Visser,et al.  THE POTENTIAL OF NANOPARTICLE ENHANCED IONIC LIQUIDS (NEILS) AS ADVANCED HEAT TRANSFER FLUIDS , 2011 .

[45]  J. Pacio,et al.  Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems , 2013 .

[46]  Subbu Sethuvenkatraman,et al.  A review of thermal energy storage technologies and control approaches for solar cooling , 2015 .

[47]  D. Banerjee,et al.  Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic , 2014 .

[48]  T. Akiyama,et al.  Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage , 2016 .

[49]  Edward S. Rubin,et al.  Economic implications of thermal energy storage for concentrated solar thermal power , 2011 .

[50]  Jesús Lancis,et al.  Fabrication of gold nanoparticles in Therminol VP-1 by laser ablation and fragmentation with fs pulses , 2014 .

[51]  L. Cabeza,et al.  Utilization of phase change materials in solar domestic hot water systems , 2009 .

[52]  F. Bruno,et al.  Impact of the heat transfer fluid in a flat plate phase change thermal storage unit for concentrated solar tower plants , 2014 .

[53]  R. Frischknecht,et al.  Implementation of Life Cycle Impact Assessment Methods. ecoinvent report No. 3, v2.2 , 2010 .

[54]  Reiner Buck,et al.  Analysis Of Solar Thermal Power Plants With Thermal Energy Storage And Solar-Hybrid Operation Strategy , 2011 .

[55]  A. Patapoutian,et al.  ThermoTRP channels and beyond: mechanisms of temperature sensation , 2003, Nature Reviews Neuroscience.

[56]  Amir Faghri,et al.  Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications , 2012 .

[57]  Donghyun Shin,et al.  Nanoparticle Dispersions on Ternary Nitrate Salts for Heat Transfer Fluid Applications in Solar Thermal Power , 2016 .

[58]  D. Banerjee,et al.  Enhancement of Heat Capacity of Molten Salt Eutectics using Inorganic Nanoparticles for Solar Thermal Energy Applications , 2011 .

[59]  A. Kruizenga,et al.  Corrosion of Iron Stainless Steels in Molten Nitrate Salt , 2014 .

[60]  Zhiming M. Wang,et al.  A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles. , 2014, Nanoscale.

[61]  T. Bauer,et al.  Material aspects of Solar Salt for sensible heat storage , 2013 .

[62]  D. Mondieig,et al.  Protection of temperature sensitive biomedical products using molecular alloys as phase change material. , 2003, Transfusion and apheresis science : official journal of the World Apheresis Association : official journal of the European Society for Haemapheresis.

[63]  H. Gonçalves,et al.  The Potential of Solar Heat in Industrial Processes. A State of the Art Review for Spain and Portugal , 2000 .

[64]  Edward Fuentealba,et al.  Corrosion of stainless steels and low-Cr steel in molten Ca(NO3)2–NaNO3–KNO3 eutectic salt for direct energy storage in CSP plants , 2015 .

[65]  Changying Zhao,et al.  Thermo-mechanical analysis of ceramic encapsulated phase-change-material (PCM) particles , 2011 .

[66]  Soteris A. Kalogirou,et al.  The potential of solar industrial process heat applications , 2003 .

[67]  D. Brüggemann,et al.  Galactitol as phase change material for latent heat storage of solar cookers: Investigating thermal behavior in bulk cycling , 2015 .

[68]  R. Saidur,et al.  A comparative review on the specific heat of nanofluids for energy perspective , 2014 .

[69]  Ming-Chang Lu,et al.  Specific heat capacity of molten salt-based alumina nanofluid , 2013, Nanoscale Research Letters.

[70]  A. S. Mujumdar,et al.  A New Solar Receiver Thermal Store for Space-Based Activities Using Multiple Composite Phase-Change Materials , 1995 .

[71]  X. Py,et al.  High-Temperature Sensible Heat-Based Thermal Energy Storage Materials Made of Vitrified MSWI Fly Ashes , 2015 .

[72]  Luisa F. Cabeza,et al.  Material selection and testing for thermal energy storage in solar cooling , 2013 .

[73]  D. Banerjee,et al.  Effect of Dispersion Homogeneity on Specific Heat Capacity Enhancement of Molten Salt Nanomaterials Using Carbon Nanotubes , 2015 .

[74]  Luisa F. Cabeza,et al.  Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage , 2015 .

[75]  Luisa F. Cabeza,et al.  Selection and characterization of recycled materials for sensible thermal energy storage , 2012 .

[76]  Hasan Demir,et al.  A review on adsorption heat pump: Problems and solutions , 2008 .

[77]  Donghyun Shin,et al.  Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3–NaNO3–KNO3) salt eutectic for thermal energy storage , 2016 .

[78]  L. Cabeza,et al.  Intercomparative tests on phase change materials characterisation with differential scanning calorimeter , 2013 .

[79]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[80]  Xavier Py,et al.  Applicability of thermal energy storage recycled ceramics to high temperature and compressed air operating conditions , 2014 .

[81]  S. H. Goods,et al.  Creep and the corrosion characteristics of Incoloy Alloy 800 in molten nitrate salts , 1981 .

[82]  R.W. Johnson,et al.  The changing automotive environment: high-temperature electronics , 2004, IEEE Transactions on Electronics Packaging Manufacturing.

[83]  K. Pielichowski,et al.  Phase change materials for thermal energy storage , 2014 .

[84]  Javier Rodríguez-Aseguinolaza,et al.  Thermo-physical Properties of a Steel-making by-product to be used as Thermal Energy Storage Material in a Packed-bed System , 2015 .

[85]  Luisa F. Cabeza,et al.  Embodied energy in thermal energy storage (TES) systems for high temperature applications , 2015 .

[86]  Debjyoti Banerjee,et al.  Experimental Investigation of Molten Salt Nanofluid for Solar Thermal Energy Application , 2011 .

[87]  H. Cui,et al.  Thermal performance analysis for a heat receiver using multiple phase change materials , 2003 .

[88]  Nicholas R. Jankowski,et al.  A review of phase change materials for vehicle component thermal buffering , 2014 .

[89]  S. Shimada,et al.  Corrosion behaviour of various model alloys with NaCl–KCl coating , 2005 .

[90]  Sharon J. W. Klein,et al.  Multi-criteria decision analysis of concentrated solar power with thermal energy storage and dry cooling. , 2013, Environmental science & technology.

[91]  W. Tao,et al.  Performance optimization of two-stage latent heat storage unit based on entransy theory , 2014 .

[92]  F. Pérez,et al.  Thermal influence in corrosion properties of Chilean solar nitrates , 2014 .

[93]  Luisa F. Cabeza,et al.  Measurement of enthalpy curves of phase change materials via DSC and T-History: When are both methods needed to estimate the behaviour of the bulk material in applications? , 2014 .

[94]  J. Kenny,et al.  Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage , 2013, Nanoscale Research Letters.

[95]  Donghyun Shin,et al.  Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications , 2013 .

[96]  L. Cabeza,et al.  Heat and cold storage with PCM: An up to date introduction into basics and applications , 2008 .

[97]  S. Chungpaibulpatana,et al.  A review of absorption refrigeration technologies , 2001 .

[98]  Xinhai Xu,et al.  Heat transfer fluids for concentrating solar power systems – A review , 2015 .

[99]  John J Burkhardt,et al.  Life cycle assessment of a power tower concentrating solar plant and the impacts of key design alternatives. , 2013, Environmental science & technology.

[100]  R. Martinez-Cuenca,et al.  Increment of specific heat capacity of solar salt with SiO2 nanoparticles , 2014, Nanoscale Research Letters.

[101]  Luisa F. Cabeza,et al.  Comparative life cycle assessment of thermal energy storage systems for solar power plants , 2012 .

[102]  Á. G. Fernández,et al.  Impurity Influence in Physico-chemical and Corrosion Properties of Chilean Solar Nitrates☆ , 2014 .

[103]  A. Abramov,et al.  Spectroelectrochemical Study of Stainless Steel Corrosion in NaCl-KCl Melt , 2010 .

[104]  Patrick Echegut,et al.  Thermal storage material from inertized wastes: Evolution of structural and radiative properties with temperature , 2012 .

[105]  Germán Ferreira,et al.  Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption , 2014 .

[106]  Yolanda Lechón,et al.  Life Cycle Environmental Impacts of Electricity Production by Solarthermal Power Plants in Spain , 2008 .

[107]  Alfonso Aranda-Usón,et al.  Environmental profile of latent energy storage materials applied to industrial systems. , 2014, The Science of the total environment.

[108]  Luisa F. Cabeza,et al.  Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies , 2015 .

[109]  Rupa Nath,et al.  Encapsulation of High Temperature Phase Change Materials for Thermal Energy Storage , 2012 .

[110]  M. Galetz,et al.  Corrosion behavior of stainless and low-chromium steels and IN625 in molten nitrate salts at 600 °C , 2016 .

[111]  Pierre Neveu,et al.  A review of chemical heat pump technology and applications , 2001 .

[112]  Hongfa Di,et al.  Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook , 2007 .

[113]  Martin Belusko,et al.  Experimental investigation of dynamic melting in a tube-in-tank PCM system , 2013 .

[114]  Veera Gnaneswar Gude,et al.  Energy storage for desalination processes powered by renewable energy and waste heat sources , 2015 .

[115]  K. Nithyanandam,et al.  Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage , 2014 .

[116]  Donghyun Shin,et al.  Enhancement of specific heat of ternary nitrate (LiNO3-NaNO3-KNO3) salt by doping with SiO2 nanoparticles for solar thermal energy storage , 2014 .

[117]  Y. Lalau,et al.  Comparative LCA Between Current and Alternative Waste-Based TES for CSP , 2016 .

[118]  Luisa F. Cabeza,et al.  Stability of sugar alcohols as PCM for thermal energy storage , 2014 .

[119]  W. Cheng,et al.  High-temperature corrosion of Cr–Mo steel in molten LiNO3–NaNO3–KNO3 eutectic salt for thermal energy storage , 2015 .

[120]  R. Pitz-Paal,et al.  Cascaded latent heat storage for parabolic trough solar power plants , 2007 .

[121]  X. Py,et al.  Corrosion effects between molten salts and thermal storage material for concentrated solar power plants , 2012 .

[122]  Luisa F. Cabeza,et al.  Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials , 2016 .

[123]  Debjyoti Banerjee,et al.  Enhanced Specific Heat Capacity of Nanomaterials Synthesized by Dispersing Silica Nanoparticles in Eutectic Mixtures , 2013 .

[124]  A. Kruizenga,et al.  Molten nitrate salts at 600 and 680 °C: Thermophysical property changes and corrosion of high-temperature nickel alloys , 2014 .

[125]  Patrick Echegut,et al.  Recycled Material for Sensible Heat Based Thermal Energy Storage to be Used in Concentrated Solar Thermal Power Plants , 2011 .

[126]  R. Bradshaw,et al.  Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts , 2004 .

[127]  F. Meunier,et al.  Solid sorption: An alternative to CFCs , 1993 .

[128]  Luisa F. Cabeza,et al.  Corrosion of metal containers for use in PCM energy storage , 2015 .

[129]  S. Ushak,et al.  Development of Thermal Energy Storage Materials from Waste -Process Salts , 2014 .

[130]  Antonio Ramos Archibold,et al.  The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells , 2014 .

[131]  D. Banerjee,et al.  Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications , 2011 .

[132]  John J Burkhardt,et al.  Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. , 2011, Environmental science & technology.

[133]  Werner Platzer,et al.  High temperature latent heat storage with a screw heat exchanger: Design of prototype , 2013 .

[134]  D. Banerjee,et al.  Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications , 2015 .

[135]  L. Cabeza,et al.  Health hazard, cycling and thermal stability as key parameters when selecting a suitable phase change material (PCM) , 2016 .

[136]  F. Bruno,et al.  Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage , 2015 .

[137]  Arun S. Mujumdar,et al.  Application of phase change materials in thermal management of electronics , 2007 .

[138]  Luisa F. Cabeza,et al.  Materials used as PCM in thermal energy storage in buildings: A review , 2011 .

[139]  A. Gualtieri,et al.  Thermal decomposition of asbestos and recycling in traditional ceramics , 2000 .

[140]  M. I. Lasanta,et al.  Molten Salt Corrosion of Stainless Steels and Low-Cr Steel in CSP Plants , 2012, Oxidation of Metals.