Ribosome crystallography: From early evolution to contemporary medical insights

Ribosome research took off as soon as ribosomes were identified. At the end of the seventies the extensive biochemical studies yielded illuminating findings about the overall nature of ribosome function. These studies showed that all ribosomes are composed of two unequal subunits. The small subunit in bacteria, denoted as 30S, contains an RNA chain (16S) of about 1500 nucleotides and 20–21 different proteins, whereas the large subunit, denoted as 50S, contains two RNA chains (23S and 5S RNA) of about 3000 nucleotides in total, and 31–35 different proteins. In all organisms the two subunits exist independently and associate to form functionally active ribosomes.

[1]  M. Yusupov,et al.  Crystallization of 70 S ribosomes and 30 S ribosomal subunits from Thermus thermophilus , 1987 .

[2]  Gregor Blaha,et al.  Structures of MLSBK Antibiotics Bound to Mutated Large Ribosomal Subunits Provide a Structural Explanation for Resistance , 2005, Cell.

[3]  Directed evolution of nucleic acids by independent replication and selection. , 1990, Science.

[4]  A. Bashan,et al.  Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Moore The ribosome returns , 1988, Nature.

[6]  Daniel N. Wilson,et al.  Enhanced SnapShot: Antibiotic Inhibition of Protein Synthesis II , 2009, Cell.

[7]  R. Garrett Membrane molecular biology Edited by C. F. Fox and A. Keith. Pp xvii + 525. W. H. Freeman and Co. Ltd, Reading. 1972. E11a30 , 1973 .

[8]  A. Yonath,et al.  From peptide‐bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects , 2005, FEBS letters.

[9]  Matthew Belousoff,et al.  The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. , 2009, Research in microbiology.

[10]  A. Bashan,et al.  Correlating ribosome function with high-resolution structures. , 2008, Trends in microbiology.

[11]  Reproducible growth of well diffracting ribosomal crystals. , 2005, Acta crystallographica. Section D, Biological crystallography.

[12]  F. Schluenzen,et al.  Ribosomal crystallography: from poorly diffracting microcrystals to high-resolution structures. , 2001, Methods.

[13]  T. Steitz,et al.  Peptidyl-CCA deacylation on the ribosome promoted by induced fit and the O3'-hydroxyl group of A76 of the unacylated A-site tRNA. , 2008, RNA.

[14]  S. Hobbie,et al.  Mitochondrial deafness alleles confer misreading of the genetic code , 2008, Proceedings of the National Academy of Sciences.

[15]  S Blair Hedges,et al.  The colonization of land by animals: molecular phylogeny and divergence times among arthropods. , 2004, BMC biology.

[16]  R. Green,et al.  Base-pairing between 23S rRNA and tRNA in the ribosomal A site. , 1999, Molecular cell.

[17]  A. Bashan,et al.  On Ribosome Conservation and Evolution , 2006 .

[18]  Daniel N. Wilson Antibiotics and the Inhibition of Ribosome Function , 2006 .

[19]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[20]  R. Milligan,et al.  Location of exit channel for nascent protein in 80S ribosome , 1986, Nature.

[21]  V. Ramakrishnan,et al.  Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome , 2009, Nature Structural &Molecular Biology.

[22]  Michael Yarus,et al.  Multiple translational products from a five-nucleotide ribozyme , 2010, Proceedings of the National Academy of Sciences.

[23]  E. Böttger The ribosome as a drug target. , 2006, Trends in biotechnology.

[24]  F. Hartl,et al.  Real-time observation of trigger factor function on translating ribosomes , 2006, Nature.

[25]  J. Holton,et al.  Structural basis for aminoglycoside inhibition of bacterial ribosome recycling , 2007, Nature Structural &Molecular Biology.

[26]  F. Crick Origin of the Genetic Code , 1967, Nature.

[27]  Harry F. Noller,et al.  Crystal Structure of a 70S Ribosome-tRNA Complex Reveals Functional Interactions and Rearrangements , 2014, Cell.

[28]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[29]  A. Mankin,et al.  Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide , 2001, Nature.

[30]  E. Böttger,et al.  Visions & Reflections ( Minireview ) Antimicrobial agents targeting the ribosome : the issue of selectivity and toxicity lessons to be learned , 2007 .

[31]  Daniel N. Wilson,et al.  Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition. , 2010, Chemistry & biology.

[32]  Rachel Green,et al.  The Active Site of the Ribosome Is Composed of Two Layers of Conserved Nucleotides with Distinct Roles in Peptide Bond Formation and Peptide Release , 2004, Cell.

[33]  S. Steinberg,et al.  A hierarchical model for evolution of 23S ribosomal RNA , 2009, Nature.

[34]  E. Youngman,et al.  The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. , 2006, RNA.

[35]  A. Bashan,et al.  Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. , 2004, Annual review of microbiology.

[36]  M. Eisenstein,et al.  Ribosomal crystallography: from crystal growth to initial phasing , 1996 .

[37]  J Frank,et al.  The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. , 2001, Molecular cell.

[38]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[39]  N. Ban,et al.  Generation of ribosome nascent chain complexes for structural and functional studies. , 2007, Journal of structural biology.

[40]  J. S. Weinger,et al.  Substrate-assisted catalysis of peptide bond formation by the ribosome , 2004, Nature Structural &Molecular Biology.

[41]  A. Yonath,et al.  Parameters for crystal growth of ribosomal subunits , 1982, Journal of cellular biochemistry.

[42]  Charlotte M. Deane,et al.  Cotranslational protein folding - fact or fiction? , 2007, ISMB/ECCB.

[43]  J. Poehlsgaard,et al.  The bacterial ribosome as a target for antibiotics , 2005, Nature Reviews Microbiology.

[44]  Joachim Frank,et al.  Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements. , 2006, Molecular cell.

[45]  A. Mankin,et al.  Antibiotics and the ribosome , 2006, Molecular microbiology.

[46]  M. Rodnina,et al.  Rapid peptide bond formation on isolated 50S ribosomal subunits , 2006, EMBO reports.

[47]  J. Watson,et al.  Involvement of RNA in the Synthesis of Proteins , 1963, Science.

[48]  Bruno P. Klaholz,et al.  Structure of the 30S translation initiation complex , 2008, Nature.

[49]  Daniel N. Wilson,et al.  The binding mode of the trigger factor on the ribosome: Implications for protein folding and SRP interaction , 2005, Structure.

[50]  A. Spirin,et al.  Does the channel for nascent peptide exist inside the ribosome? Immune electron microscopy study , 1988, FEBS letters.

[51]  Wolfgang Wintermeyer,et al.  How ribosomes make peptide bonds. , 2007, Trends in biochemical sciences.

[52]  Wittmann Hg,et al.  Structure and function of the ribosome. , 1973 .

[53]  A. Mankin,et al.  The Ribosomal Peptidyl Transferase Center: Structure, Function, Evolution, Inhibition , 2005, Critical reviews in biochemistry and molecular biology.

[54]  R. Berisio,et al.  Functional aspects of ribosomal architecture: symmetry, chirality and regulation , 2004 .

[55]  A. Yonath,et al.  Cryocrystallography of ribosomal particles. , 1989, Acta crystallographica. Section B, Structural science.

[56]  H. Noller,et al.  Unusual resistance of peptidyl transferase to protein extraction procedures. , 1992, Science.

[57]  M Gerstein,et al.  The geometry of the ribosomal polypeptide exit tunnel. , 2006, Journal of molecular biology.

[58]  D Thirumalai,et al.  Ribosome exit tunnel can entropically stabilize alpha-helices. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Bernard Rees,et al.  Structural basis for messenger RNA movement on the ribosome , 2006, Nature.

[60]  Z. Vogel,et al.  Ribosome activation and the binding of dihydrostreptomycin: effect of polynucleotides and temperature on activation. , 1970, Journal of molecular biology.

[61]  R. Berisio,et al.  23S rRNA 2058A→G Alteration Mediates Ketolide Resistance in Combination with Deletion in L22 , 2006, Antimicrobial Agents and Chemotherapy.

[62]  Frank Schluenzen,et al.  Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. , 2003, Molecular cell.

[63]  T. Cech,et al.  One binding site determines sequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity , 1986, Cell.

[64]  H. Bartels,et al.  Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 A resolution. , 1991, Journal of molecular biology.

[65]  R. Berisio,et al.  A crevice adjoining the ribosome tunnel: Hints for cotranslational folding , 2005, FEBS letters.

[66]  A. Bashan,et al.  Crystal structure of the synergistic antibiotic pair, lankamycin and lankacidin, in complex with the large ribosomal subunit , 2011, Proceedings of the National Academy of Sciences.

[67]  J. Åqvist,et al.  Analysis of predictions for the catalytic mechanism of ribosomal peptidyl transfer. , 2006, Biochemistry.

[68]  Sotaro Uemura,et al.  Peptide bond formation destabilizes Shine–Dalgarno interaction on the ribosome , 2007, Nature.

[69]  S. Strobel,et al.  Toward Ribosomal RNA Catalytic Activity in the Absence of Protein , 2007, Journal of Molecular Evolution.

[70]  F. Schluenzen,et al.  X‐ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit , 2005, The EMBO journal.

[71]  Samanta Pino,et al.  Generation of Long RNA Chains in Water* , 2009, The Journal of Biological Chemistry.

[72]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit , 2000 .

[73]  A. Bashan,et al.  The linkage between ribosomal crystallography, metal ions, heteropolytungstates and functional flexibility. , 2008, Journal of molecular structure.

[74]  J. Frank,et al.  A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome , 1995, Nature.

[75]  A new crystalline form of 30 S ribosomal subunits from Thermus thermophilus , 1988 .

[76]  Intraribosomal Regulation of Expression and Fate of Proteins , 2004, Chembiochem : a European journal of chemical biology.

[77]  A. Yonath,et al.  Antibiotics targeting ribosomes: resistance, selectivity, synergism and cellular regulation. , 2005, Annual review of biochemistry.

[78]  Frank Schluenzen,et al.  Structural insight into the role of the ribosomal tunnel in cellular regulation , 2003, Nature Structural Biology.

[79]  R. Berisio,et al.  Ribosome's mode of function: myths, facts and recent results , 2009, Journal of peptide science : an official publication of the European Peptide Society.

[80]  Malte Beringer,et al.  The ribosomal peptidyl transferase. , 2007, Molecular cell.

[81]  A. Yonath,et al.  Some x-ray diffraction patterns from single crystals of the large ribosomal subunit from Bacillus stearothermophilus. , 1984, Journal of molecular biology.

[82]  Jill K Thompson,et al.  Testing the conservation of the translational machinery over evolution in diverse environments: assaying Thermus thermophilus ribosomes and initiation factors in a coupled transcription-translation system from Escherichia coli. , 2004, Nucleic acids research.

[83]  B. Cooperman,et al.  Rapid ribosomal translocation depends on the conserved 18-55 base pair in P-site transfer RNA , 2006, Nature Structural &Molecular Biology.

[84]  V. Ramakrishnan,et al.  Crystal structure of an initiation factor bound to the 30S ribosomal subunit. , 2001, Science.

[85]  W. Hendrickson,et al.  Promiscuous Substrate Recognition in Folding and Assembly Activities of the Trigger Factor Chaperone , 2009, Cell.

[86]  Yong-Gui Gao,et al.  The Crystal Structure of the Ribosome Bound to EF-Tu and Aminoacyl-tRNA , 2009, Science.

[87]  A Yonath,et al.  Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. , 2000, Cell.

[88]  Chen Davidovich,et al.  Structural basis for cross-resistance to ribosomal PTC antibiotics , 2008, Proceedings of the National Academy of Sciences.

[89]  Samanta Pino,et al.  Nonenzymatic RNA Ligation in Water* , 2008, Journal of Biological Chemistry.

[90]  A. Yonath,et al.  Crystallographic and image reconstruction studies on ribosomal particles from bacterial sources. , 1988, Methods in enzymology.

[91]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[92]  C. Yanofsky,et al.  Instruction of Translating Ribosome by Nascent Peptide , 2002, Science.

[93]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[94]  A Yonath,et al.  Characterization of crystals of small ribosomal subunits. , 1988, Journal of molecular biology.

[95]  Malte Beringer,et al.  Essential Mechanisms in the Catalysis of Peptide Bond Formation on the Ribosome* , 2005, Journal of Biological Chemistry.

[96]  Thomas A Steitz,et al.  Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. , 2005, Molecular cell.

[97]  Peter J McCormick,et al.  Nascent Membrane and Secretory Proteins Differ in FRET-Detected Folding Far inside the Ribosome and in Their Exposure to Ribosomal Proteins , 2004, Cell.

[98]  T. Cech,et al.  Peptide bond formation by in vitro selected ribozymes , 1997, Nature.

[99]  A. Yonath,et al.  Characterization and crystallization of ribosomal particles from Halobacterium marismortui , 1985 .

[100]  T. Steitz,et al.  Formation of the First Peptide Bond: The Structure of EF-P Bound to the 70S Ribosome , 2009, Science.

[101]  A. Rich,et al.  Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. , 1967, Journal of molecular biology.

[102]  R. Miskin,et al.  Inactivation and reactivation of ribosomal subunits: amino acyl-transfer RNA binding activity of the 30 s subunit of Escherichia coli. , 1971, Journal of molecular biology.

[103]  G. Palade,et al.  A SMALL PARTICULATE COMPONENT OF THE CYTOPLASM , 1955, The Journal of biophysical and biochemical cytology.

[104]  G. Reinhart,et al.  The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation , 1993, Cell.

[105]  G. F. Joyce,et al.  Self-Sustained Replication of an RNA Enzyme , 2009, Science.

[106]  V. Ramakrishnan,et al.  What we have learned from ribosome structures. , 2008, Biochemical Society transactions.

[107]  Koreaki Ito,et al.  The Ribosomal Exit Tunnel Functions as a Discriminating Gate , 2002, Cell.

[108]  A. Bashan,et al.  Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity , 2007, Proceedings of the National Academy of Sciences.

[109]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[110]  M. Illangasekare,et al.  Aminoacyl-RNA synthesis catalyzed by an RNA , 1995, Science.

[111]  J. Holton,et al.  Structures of the Bacterial Ribosome at 3.5 Å Resolution , 2005, Science.

[112]  A Yonath,et al.  A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. , 1987, Science.

[113]  Gregor Blaha,et al.  The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome , 2010, Nature Structural &Molecular Biology.

[114]  H. Noller,et al.  Structural basis for translation termination on the 70S ribosome , 2008, Nature.

[115]  H. Bernstein,et al.  Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. , 2006, Molecular cell.

[116]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[117]  C. Dobson,et al.  Three-dimensional structures of translating ribosomes by Cryo-EM. , 2004, Molecular cell.

[118]  R. Zarivach,et al.  23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A-->G. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Y. Caspi,et al.  Ancient machinery embedded in the contemporary ribosome. , 2010, Biochemical Society transactions.

[120]  Koreaki Ito,et al.  Recruitment of a species-specific translational arrest module to monitor different cellular processes , 2011, Proceedings of the National Academy of Sciences.

[121]  P. Walter,et al.  Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. , 1994, Annual review of cell biology.

[122]  N. Volkmann,et al.  Crystals of complexes mimicking protein biosynthesis are suitable for crystallographic studies. , 1990, Biochimica et biophysica acta.

[123]  S. Marzi,et al.  A structural view of translation initiation in bacteria , 2009, Cellular and Molecular Life Sciences.

[124]  Vijay S Pande,et al.  Side-chain recognition and gating in the ribosome exit tunnel , 2008, Proceedings of the National Academy of Sciences.

[125]  A Yonath,et al.  Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3 , 2001, The EMBO journal.

[126]  R. Zarivach,et al.  Symmetry at the active site of the ribosome: structural and functional implications , 2005, Biological chemistry.

[127]  P. Unwin,et al.  Packing of ribosomes in crystals from the lizard Lacerta sicula. , 1977, Journal of molecular biology.

[128]  A. Bashan,et al.  Ribosomal antibiotics: structural basis for resistance, synergism and selectivity. , 2004, Trends in biotechnology.

[129]  Guy Ziv,et al.  Ribosome exit tunnel can entropically stabilize α-helices , 2005 .

[130]  D. Klepacki,et al.  The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics , 2010, Proceedings of the National Academy of Sciences.

[131]  M. Yusupov,et al.  Interactions of the ribosome with mRNA and tRNA. , 2010, Current opinion in structural biology.

[132]  H. Bartels,et al.  Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin , 2004, BMC Biology.

[133]  M. Yusupov,et al.  Messenger RNA conformations in the ribosomal E site revealed by X‐ray crystallography , 2007, EMBO reports.

[134]  L. Lindahl,et al.  Mutation from guanine to adenine in 25S rRNA at the position equivalent to E. coli A2058 does not confer erythromycin sensitivity in Sacchromyces cerevisae. , 2008, RNA.

[135]  A. Mankin Antibiotic blocks mRNA path on the ribosome , 2006, Nature Structural &Molecular Biology.

[136]  M van Heel,et al.  The 70S Escherichia coli ribosome at 23 A resolution: fitting the ribosomal RNA. , 1995, Structure.

[137]  M. Rodnina,et al.  Modulation of the Rate of Peptidyl Transfer on the Ribosome by the Nature of Substrates* , 2008, Journal of Biological Chemistry.

[138]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[139]  C. Yanofsky,et al.  Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[140]  Sabine Petry,et al.  Insights into Translational Termination from the Structure of RF2 Bound to the Ribosome , 2008, Science.

[141]  Scott M Stagg,et al.  Modeling a minimal ribosome based on comparative sequence analysis. , 2002, Journal of molecular biology.

[142]  M. Yusupov,et al.  Structural aspects of messenger RNA reading frame maintenance by the ribosome , 2010, Nature Structural &Molecular Biology.

[143]  R. Jensen,et al.  Barreling through the membrane , 2004, Nature Structural &Molecular Biology.

[144]  H. Noller,et al.  A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome , 1995, Nature.

[145]  Tsutomu Suzuki,et al.  Comprehensive genetic selection revealed essential bases in the peptidyl-transferase center , 2006, Proceedings of the National Academy of Sciences.

[146]  A. Yonath Ribosomal Tolerance and Peptide Bond Formation , 2003, Biological chemistry.

[147]  Wolfgang Wintermeyer,et al.  Signal sequence–independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel , 2008, Nature Structural &Molecular Biology.

[148]  A. Bashan,et al.  Structural basis for the antibacterial activity of the 12-membered-ring mono-sugar macrolide methymycin , 2010 .

[149]  R. Garrett,et al.  Structure and function of the ribosome. , 1973, Endeavour.

[150]  J. Karle,et al.  The transition state for formation of the peptide bond in the ribosome , 2006, Proceedings of the National Academy of Sciences.

[151]  The Nucleation of Cholesterol Monohydrate Crystals in Model Bile Solutions , 1979 .

[152]  Colin Echeverría Aitken,et al.  Real-time tRNA transit on single translating ribosomes at codon resolution , 2010, Nature.

[153]  T. Steitz,et al.  A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits , 2002, Nature Structural Biology.

[154]  Thomas A Steitz,et al.  Structural insights into peptide bond formation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[155]  A. Warshel,et al.  What are the roles of substrate-assisted catalysis and proximity effects in peptide bond formation by the ribosome? , 2005, Biochemistry.