Maximum Principle and Bang-Bang Property of Time Optimal Controls for Schrödinger-Type Systems
暂无分享,去创建一个
[1] Andrew Vogt,et al. Unique continuation of some dispersive waves , 1994 .
[2] Mario Sigalotti,et al. On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping , 2011, ArXiv.
[3] J. Lions,et al. Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .
[4] Karl Kunisch,et al. On time optimal control of the wave equation, its regularization and optimality system , 2013 .
[5] V. Komornik. On the exact internal controllability of a Petrowsky system , 1992 .
[6] Kangsheng Liu. Locally Distributed Control and Damping for the Conservative Systems , 1997 .
[7] P. Heywood. Trigonometric Series , 1968, Nature.
[8] G. Weiss,et al. Observation and Control for Operator Semigroups , 2009 .
[9] Nicolas Burq,et al. Contrôlabilité exacte des ondes dans des ouverts peu réguliers , 1997 .
[10] E B Lee,et al. Foundations of optimal control theory , 1967 .
[11] C. Bardos,et al. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .
[12] Vilmos Komornik,et al. Fourier Series in Control Theory , 2005 .
[13] Gengsheng Wang,et al. An observability for parabolic equations from a measurable set in time , 2011, ArXiv.
[14] Stéphane Jaffard. Contrôle interne exact des vibrations d'une plaque rectangulaire , 1990 .
[15] Karl Kunisch,et al. On Time Optimal Control of the Wave Equation and Its Numerical Realization as Parametric Optimization Problem , 2013, SIAM J. Control. Optim..
[16] Karl Kunisch,et al. Time optimal control of the wave equation , its regularization and numerical realization , 2011 .
[17] H. O. Fattorini,et al. Infinite dimensional linear control systems : the time optimal and norm optimal problems , 2005 .
[18] G. Lebeau. Contrôle de l'équation de Schrödinger , 1992 .
[19] Jerzy Zabczyk,et al. Mathematical control theory - an introduction , 1992, Systems & Control: Foundations & Applications.
[20] Kim Dang Phung,et al. An observability estimate for parabolic equations from a measurable set in time and its applications , 2013 .
[21] V. Barbu,et al. Convexity and optimization in banach spaces , 1972 .
[22] Werner Krabs,et al. On time-minimal distributed control of vibrations , 1989 .
[23] Kim Dang Phung,et al. On the existence of time optimal controls for linear evolution equations , 2007 .
[24] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[25] T. Seidman,et al. An Abstract Bang-Bang Principle and Time-Optimal Boundary Control of the Heat Equation , 1997 .
[26] Chao Zhang,et al. LACK OF UNIFORMLY EXPONENTIAL STABILIZATION FOR ISOMETRIC C0-SEMIGROUPS UNDER COMPACT PERTURBATION OF THE GENERATORS IN BANACH SPACES , 2007 .
[27] M. Zelikin,et al. Control theory and optimization I , 1999 .
[28] Enrique Zuazua,et al. The Wave Equation: Control and Numerics , 2012 .
[29] H. O. Fattorini,et al. Time-Optimal Control of Solutions of Operational Differenital Equations , 1964 .
[30] Gengsheng Wang,et al. Linfinity-Null Controllability for the Heat Equation and Its Consequences for the Time Optimal Control Problem , 2008, SIAM J. Control. Optim..
[32] E. C. Titchmarsh,et al. The theory of functions , 1933 .
[33] Ionel Roventa,et al. Time optimal boundary controls for the heat equation , 2012 .
[34] H. Fattorini. THE TIME OPTIMAL PROBLEM FOR DISTRIBUTED CONTROL OF SYSTEMS DESCRIBED BY THE WAVE EQUATION , 1977 .
[35] Karl Kunisch,et al. TIME OPTIMAL CONTROL OF THE HEAT EQUATION WITH POINTWISE CONTROL CONSTRAINTS , 2013 .
[36] R. Bellman,et al. On the “bang-bang” control problem , 1956 .