Maximum Principle and Bang-Bang Property of Time Optimal Controls for Schrödinger-Type Systems

We consider the time optimal control problem, with a point target, for a class of infinite dimensional systems with a dynamics governed by an abstract Schrodinger type equation. The main results establish a Pontryagyn type maximum principle and give sufficient conditions for the bang-bang property of optimal controls. The results are then applied to some systems governed by partial differential equations. The paper ends by a discussion of possible extensions and by stating some open problems.

[1]  Andrew Vogt,et al.  Unique continuation of some dispersive waves , 1994 .

[2]  Mario Sigalotti,et al.  On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping , 2011, ArXiv.

[3]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[4]  Karl Kunisch,et al.  On time optimal control of the wave equation, its regularization and optimality system , 2013 .

[5]  V. Komornik On the exact internal controllability of a Petrowsky system , 1992 .

[6]  Kangsheng Liu Locally Distributed Control and Damping for the Conservative Systems , 1997 .

[7]  P. Heywood Trigonometric Series , 1968, Nature.

[8]  G. Weiss,et al.  Observation and Control for Operator Semigroups , 2009 .

[9]  Nicolas Burq,et al.  Contrôlabilité exacte des ondes dans des ouverts peu réguliers , 1997 .

[10]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[11]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[12]  Vilmos Komornik,et al.  Fourier Series in Control Theory , 2005 .

[13]  Gengsheng Wang,et al.  An observability for parabolic equations from a measurable set in time , 2011, ArXiv.

[14]  Stéphane Jaffard Contrôle interne exact des vibrations d'une plaque rectangulaire , 1990 .

[15]  Karl Kunisch,et al.  On Time Optimal Control of the Wave Equation and Its Numerical Realization as Parametric Optimization Problem , 2013, SIAM J. Control. Optim..

[16]  Karl Kunisch,et al.  Time optimal control of the wave equation , its regularization and numerical realization , 2011 .

[17]  H. O. Fattorini,et al.  Infinite dimensional linear control systems : the time optimal and norm optimal problems , 2005 .

[18]  G. Lebeau Contrôle de l'équation de Schrödinger , 1992 .

[19]  Jerzy Zabczyk,et al.  Mathematical control theory - an introduction , 1992, Systems & Control: Foundations & Applications.

[20]  Kim Dang Phung,et al.  An observability estimate for parabolic equations from a measurable set in time and its applications , 2013 .

[21]  V. Barbu,et al.  Convexity and optimization in banach spaces , 1972 .

[22]  Werner Krabs,et al.  On time-minimal distributed control of vibrations , 1989 .

[23]  Kim Dang Phung,et al.  On the existence of time optimal controls for linear evolution equations , 2007 .

[24]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[25]  T. Seidman,et al.  An Abstract Bang-Bang Principle and Time-Optimal Boundary Control of the Heat Equation , 1997 .

[26]  Chao Zhang,et al.  LACK OF UNIFORMLY EXPONENTIAL STABILIZATION FOR ISOMETRIC C0-SEMIGROUPS UNDER COMPACT PERTURBATION OF THE GENERATORS IN BANACH SPACES , 2007 .

[27]  M. Zelikin,et al.  Control theory and optimization I , 1999 .

[28]  Enrique Zuazua,et al.  The Wave Equation: Control and Numerics , 2012 .

[29]  H. O. Fattorini,et al.  Time-Optimal Control of Solutions of Operational Differenital Equations , 1964 .

[30]  Gengsheng Wang,et al.  Linfinity-Null Controllability for the Heat Equation and Its Consequences for the Time Optimal Control Problem , 2008, SIAM J. Control. Optim..

[31]  Addendum: Lack of uniformly exponential stabilization for isometric $C_0$-semigroups under compact perturbation of the generators in Banach spaces , 2009 .

[32]  E. C. Titchmarsh,et al.  The theory of functions , 1933 .

[33]  Ionel Roventa,et al.  Time optimal boundary controls for the heat equation , 2012 .

[34]  H. Fattorini THE TIME OPTIMAL PROBLEM FOR DISTRIBUTED CONTROL OF SYSTEMS DESCRIBED BY THE WAVE EQUATION , 1977 .

[35]  Karl Kunisch,et al.  TIME OPTIMAL CONTROL OF THE HEAT EQUATION WITH POINTWISE CONTROL CONSTRAINTS , 2013 .

[36]  R. Bellman,et al.  On the “bang-bang” control problem , 1956 .