Electrostatically defined silicon quantum dots with counted antimony donor implants

Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

[1]  Franco Zappa,et al.  Silicon planar technology for single-photon optical detectors , 2003 .

[2]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[3]  Xuedong Hu,et al.  Exchange in silicon-based quantum computer architecture. , 2002, Physical review letters.

[4]  K. B. Whaley,et al.  Electrical activation and electron spin coherence of ultralow dose antimony implants in silicon , 2005, cond-mat/0507318.

[5]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[6]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[7]  K. Saeedi,et al.  Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28 , 2013, Science.

[8]  T. W. Hickmott Annealing of surface states in polycrystalline‐silicon–gate capacitors , 1977 .

[9]  Electron exchange coupling for single-donor solid-state spin qubits , 2003, cond-mat/0309417.

[10]  C. Yang,et al.  Single-Ion Implantation for the Development of Si-Based MOSFET Devices with Quantum Functionalities , 2012 .

[11]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[12]  Søren Andresen,et al.  Controlled shallow single ion implantation in silicon using an active substrate for sub-20 keV ions , 2005 .

[13]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[14]  I. Ohdomari,et al.  A reliable method for the counting and control of single ions for single-dopant controlled devices , 2008, Nanotechnology.

[15]  J. Bokor,et al.  Detection of low energy single ion impacts in micron scale transistors at room temperature , 2007, 0709.4056.

[16]  P. Griffin,et al.  Point defects and dopant diffusion in silicon , 1989 .

[17]  E. Bielejec,et al.  Room temperature single ion detection with Geiger mode avalanche diode detectors , 2008 .

[18]  W. J. Weber,et al.  Electronic stopping powers for heavy ions in SiC and SiO2 , 2014 .

[19]  E. Bielejec,et al.  Single ion implantation for single donor devices using Geiger mode detectors , 2009, Nanotechnology.

[20]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[21]  F. Namavar,et al.  Comparison Between Simulated And Experimental Au-ion Profiles Implanted in nanocrystalline ceria , 2013 .

[22]  T. Lu,et al.  Electron spin lifetime of a single antimony donor in silicon , 2013 .