Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution

Physiochemical and electrochemical means were used to characterize the failure mechanisms of the lithium manganese oxide based solid solutions utilized as positive electrodes for Li batteries. Resultant data supports a theory in which the 22 and 55°C failure mechanisms are one in the same. The poor performance is exacerbated during cycling due to a mechanism linked to the symbiotic relationship between physical destruction induced by a surface Jahn-Teller distortion and the classic failure mechanisms presented for the chemical failure of the spinel at elevated temperature storage. Based on these findings, a spinel, LiAl x Mn 2-x O 4-z F z , was fabricated which exhibits enhanced stability at elevated temperature.

[1]  R. Clarke,et al.  Available Oxygen in Manganese Dioxide , 1956 .

[2]  M. Yoshio,et al.  Differences in electrochemical behavior of LiMn2O4 and Li1+xMn2O4 as 4-V Li-cell cathodes , 1995 .

[3]  Colin A. Vincent,et al.  Capacity Loss of Lithium Manganese Oxide Spinel in LiPF6 / Ethylene Carbonate‐Dimethyl Carbonate Electrolytes , 1999 .

[4]  J. C. Hunter Preparation of a new crystal form of manganese dioxide: λ-MnO2 , 1981 .

[5]  W. R. McKinnon,et al.  Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn[sub 2]O[sub 4] , 1994 .

[6]  Y. Shao-horn,et al.  Structural Fatigue in Spinel Electrodes in High Voltage ( 4 V ) Li / Li x Mn2 O 4 Cells , 1999 .

[7]  G. Pistoia,et al.  LI+ INSERTION INTO MN SPINEL PHASES , 1992 .

[8]  Tsutomu Ohzuku,et al.  Synthesis and Characterization of LiAl1 / 4Ni3 / 4 O 2 ( R 3̄m ) for Lithium‐Ion (Shuttlecock) Batteries , 1995 .

[9]  Seung M. Oh,et al.  Dissolution of Spinel Oxides and Capacity Losses in 4 V Li / Li x Mn2 O 4 Cells , 1996 .

[10]  Tao Zheng,et al.  Reactivity of the Solid Electrolyte Interface on Carbon Electrodes at Elevated Temperatures , 1999 .

[11]  W. F. Howard,et al.  M3+-modified LiMn2O4 spinel intercalation cathodes: II. Electrochemical stabilization by Cr3+ , 1997 .

[12]  T. Ohzuku,et al.  Comparative study of Li[LixMn2 − xO4 and LT-LiMnO2 for lithium-ion batteries , 1997 .

[13]  J. Sugiyamat,et al.  Elastic/anelastic behaviour during the phase transition in spinel LiMn2O4 , 1995 .

[14]  Takao Inoue,et al.  An Investigation of Capacity Fading of Manganese Spinels Stored at Elevated Temperature , 1998 .

[15]  Tao Zheng,et al.  The elevated temperature performance of the LiMn2O4/C system: Failure and solutions , 1999 .

[16]  Jean-Marie Tarascon,et al.  Materials' effects on the elevated and room temperature performance of CLiMn2O4 Li-ion batteries , 1997 .

[17]  R. Kostecki,et al.  Interfacial studies of a thin-film Li2Mn4O9 electrode , 1999 .

[18]  J. Tarascon,et al.  THE SPINEL PHASE OF LIMN2O4 AS A CATHODE IN SECONDARY LITHIUM CELLS , 1991 .

[19]  A. Yamada Lattice Instability in Li(LixMn2−x)O4 , 1996 .

[20]  Masaki Yoshio,et al.  An Investigation of Lithium Ion Insertion into Spinel Structure Li‐Mn‐O Compounds , 1996 .

[21]  W. F. Howard,et al.  M3+-modified LiMn2O4 spinel intercalation cathodes: I. Admetal effects on morphology and electrochemical performance , 1997 .

[22]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[23]  John B. Goodenough,et al.  Lithium insertion into Fe2(SO4)3 frameworks , 1989 .

[24]  J. Tarascon,et al.  On the origin of the 3.3 and 4.5 V steps observed in LiMn{sub 2}O{sub 4}-based spinels , 2000 .

[25]  A. Yamada,et al.  Synthesis and Structural Aspects of LiMn2 O 4 ± δ as a Cathode for Rechargeable Lithium Batteries , 1995 .

[26]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[27]  Jean-Marie Tarascon,et al.  Performance of Bellcore's plastic rechargeable Li-ion batteries , 1996 .

[28]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[29]  Y. Chiang,et al.  High Capacity, Temperature‐Stable Lithium Aluminum Manganese Oxide Cathodes for Rechargeable Batteries , 1999 .

[30]  J. Tarascon,et al.  Mechanism for Limited 55°C Storage Performance of Li1.05Mn1.95 O 4 Electrodes , 1999 .

[31]  Dominique Guyomard,et al.  The Li1+xMn2O4/C rocking-chair system: a review , 1993 .

[32]  J. Tarascon,et al.  Li Metal‐Free Rechargeable Batteries Based on Li1 + x Mn2 O 4 Cathodes ( 0 ≤ x ≤ 1 ) and Carbon Anodes , 1991 .

[33]  J. Tarascon,et al.  Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance , 1997 .

[34]  E. Cairns,et al.  Supertransferred hyperfine fields at â·Li: Variable temperature â·Li NMR studies of LiMnâOâ-based spinels , 1998 .