Proper Efficiency and Tradeoffs in Multiple Criteria and Stochastic Optimization

The mathematical equivalence between linear scalarizations in multiobjective programming and expected-value functions in stochastic optimization suggests to investigate and establish further conceptual analogies between these two areas. In this paper, we focus on the notion of proper efficiency that allows us to provide a first comprehensive analysis of solution and scenario tradeoffs in stochastic optimization. In generalization of two standard characterizations of properly efficient solutions using weighted sums and augmented weighted Tchebycheff norms for finitely many criteria, we show that these results are generally false for infinitely many criteria. In particular, these observations motivate a slightly modified definition to prove that expected-value optimization over continuous random variables still yields bounded tradeoffs almost everywhere in general. Further consequences and practical implications of these results for decision-making under uncertainty and its related theory and methodology of multiple criteria, stochastic and robust optimization are discussed.

[1]  Georgia Perakis,et al.  Dynamic pricing and inventory control: robust vs. stochastic uncertainty models—a computational study , 2010, Ann. Oper. Res..

[2]  Kaisa Miettinen,et al.  Characterizing generalized trade-off directions , 2003, Math. Methods Oper. Res..

[3]  Heinz Isermann,et al.  Technical Note - Proper Efficiency and the Linear Vector Maximum Problem , 1974, Oper. Res..

[4]  H. P. Benson,et al.  An improved definition of proper efficiency for vector maximization with respect to cones , 1979 .

[5]  Serpil Sayin,et al.  The Multiobjective Discrete Optimization Problem: A Weighted Min-Max Two-Stage Optimization Approach and a Bicriteria Algorithm , 2005, Manag. Sci..

[6]  Anita Schöbel,et al.  Generalized light robustness and the trade-off between robustness and nominal quality , 2014, Math. Methods Oper. Res..

[7]  Kaisa Miettinen,et al.  On generalized trade-off directions in nonconvex multiobjective optimization , 2002, Math. Program..

[8]  E. Riva Sanseverino,et al.  Robust multi-objective optimal dispatch of distributed energy resources in micro-grids , 2011, 2011 IEEE Trondheim PowerTech.

[9]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[10]  J. Borwein,et al.  Super efficiency in vector optimization , 1993 .

[11]  Bernard Roy,et al.  Robustness in operational research and decision aiding: A multi-faceted issue , 2010, Eur. J. Oper. Res..

[12]  Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien , 2005, Naturwissenschaften.

[13]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[14]  Włodzimierz Ogryczak,et al.  Multiple criteria optimization and decisions under risk , 2002 .

[15]  V. Bowman On the Relationship of the Tchebycheff Norm and the Efficient Frontier of Multiple-Criteria Objectives , 1976 .

[16]  F. Riesz Sur la décomposition des opérations fonctionnelles linéaires , 1929 .

[17]  Matteo Fischetti,et al.  Light Robustness , 2009, Robust and Online Large-Scale Optimization.

[18]  József Mezei,et al.  Generalizing trade-off deirections in multiobjective optimization , 2012 .

[19]  Yves De Smet,et al.  About the applicability of MCDA to some robustness problems , 2006, Eur. J. Oper. Res..

[20]  Weldon A. Lodwick,et al.  Fuzzy Optimization , 2009, Encyclopedia of Complexity and Systems Science.

[21]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[22]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[23]  Jian Hu,et al.  Robust and Stochastically Weighted Multiobjective Optimization Models and Reformulations , 2012, Oper. Res..

[24]  Alexander Engau,et al.  Multicriteria modeling and tradeoff analysis for oil load dispatch and hauling operations at Noble energy , 2015 .

[25]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[26]  K. Klamroth,et al.  A unified approach for different concepts of robustness and stochastic programming via non-linear scalarizing functionals , 2013 .

[27]  Alexander Engau,et al.  Nonlinear Multiobjective Programming , 2011 .

[28]  Kaisa Miettinen,et al.  On cone characterizations of weak, proper and Pareto optimality in multiobjective optimization , 2001, Math. Methods Oper. Res..

[29]  Nikolaos Trichakis,et al.  Pareto Efficiency in Robust Optimization , 2014, Manag. Sci..

[30]  Eng Ung Choo,et al.  Proper Efficiency in Nonconvex Multicriteria Programming , 1983, Math. Oper. Res..

[31]  Kristin Winkler Geoffrion proper efficiency in an infinite dimensional space , 2004 .

[32]  J. Borwein Proper Efficient Points for Maximizations with Respect to Cones , 1977 .

[33]  Margaret M. Wiecek,et al.  A robust multiobjective optimization problem with application to Internet routing , 2012 .

[34]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[35]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[36]  Alexander Engau,et al.  Definition and Characterization of Geoffrion Proper Efficiency for Real Vector Optimization with Infinitely Many Criteria , 2015, J. Optim. Theory Appl..

[37]  Cécile Murat,et al.  Recent advances in robust optimization: An overview , 2014, Eur. J. Oper. Res..

[38]  Constantin Zalinescu,et al.  Set-valued Optimization - An Introduction with Applications , 2014, Vector Optimization.

[39]  A. Zaffaroni,et al.  On the notion of proper efficiency in vector optimization , 1994 .

[40]  M. I. Henig Proper efficiency with respect to cones , 1982 .

[41]  R. Hartley On Cone-Efficiency, Cone-Convexity and Cone-Compactness , 1978 .

[42]  D. Blackwell,et al.  5. Admissible Points of Convex Sets , 1953 .

[43]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[44]  E. Beale ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES , 1955 .

[45]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[46]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[47]  X. Truong Existence and Density Results for Proper Efficiency in Cone Compact Sets , 2001 .

[48]  Werner Römisch,et al.  Distribution sensitivity in stochastic programming , 1991, Math. Program..

[49]  Serpil Sayin,et al.  Algorithm robust for the bicriteria discrete optimization problem , 2006, Ann. Oper. Res..

[50]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[51]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[52]  Aris Daniilidis,et al.  Arrow-Barankin-Blackwell Theorems and Related Results in Cone Duality: A Survey , 2000 .

[53]  A. Schöbel,et al.  The relationship between multi-objective robustness concepts and set-valued optimization , 2014 .

[54]  Svetlozar T. Rachev,et al.  Quantitative Stability in Stochastic Programming: The Method of Probability Metrics , 2002, Math. Oper. Res..

[55]  Ignacy Kaliszewski,et al.  Quantitative Pareto Analysis by Cone Separation Technique , 1994 .

[56]  Ignacy Kaliszewski,et al.  A modified weighted tchebycheff metric for multiple objective programming , 1987, Comput. Oper. Res..

[57]  Henri Bonnel,et al.  Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem , 2014, J. Optim. Theory Appl..