Solving joint chance constrained problems using regularization and Benders’ decomposition

We consider stochastic programs with joint chance constraints with discrete random distribution. We reformulate the problem by adding auxiliary variables. Since the resulting problem has a non-regular feasible set, we regularize it by increasing the feasible set. We solve the regularized problem by iteratively solving a master problem while adding Benders’ cuts from a slave problem. Since the number of variables of the slave problem equals to the number of scenarios, we express its solution in a closed form. We show convergence properties of the solutions. On a gas network design problem, we perform a numerical study by increasing the number of scenarios and compare our solution with a solution obtained by solving the same problem with the continuous distribution.

[1]  Patrizia Beraldi,et al.  An exact approach for solving integer problems under probabilistic constraints with random technology matrix , 2010, Ann. Oper. Res..

[2]  E. Polak,et al.  Extensions of Stochastic Optimization Results to Problems with System Failure Probability Functions , 2007 .

[3]  Victor M. Zavala,et al.  A Sequential Algorithm for Solving Nonlinear Optimization Problems with Chance Constraints , 2018, SIAM J. Optim..

[4]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[5]  Simge Küçükyavuz,et al.  On mixing sets arising in chance-constrained programming , 2012, Math. Program..

[6]  George L. Nemhauser,et al.  An integer programming approach for linear programs with probabilistic constraints , 2007, Math. Program..

[7]  E. Allevi,et al.  A stochastic optimization model for gas retail with temperature scenarios and oil price parameters , 2010 .

[8]  Jitka Dupacová,et al.  Approximation and contamination bounds for probabilistic programs , 2012, Ann. Oper. Res..

[9]  Claudia A. Sagastizábal,et al.  Probabilistic optimization via approximate p-efficient points and bundle methods , 2017, Comput. Oper. Res..

[10]  Abebe Geletu,et al.  An Inner-Outer Approximation Approach to Chance Constrained Optimization , 2017, SIAM J. Optim..

[11]  Maria Gabriela Martinez,et al.  Augmented Lagrangian method for probabilistic optimization , 2012, Ann. Oper. Res..

[12]  René Henrion,et al.  Gradient Formulae for Nonlinear Probabilistic Constraints with Gaussian and Gaussian-Like Distributions , 2014, SIAM J. Optim..

[13]  Daniel Kuhn,et al.  Distributionally robust joint chance constraints with second-order moment information , 2011, Mathematical Programming.

[14]  Melvyn Sim,et al.  From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization , 2010, Oper. Res..

[15]  Nilay Noyan,et al.  Mathematical programming approaches for generating p-efficient points , 2010, Eur. J. Oper. Res..

[16]  Alexander D. Ioffe,et al.  On Metric and Calmness Qualification Conditions in Subdifferential Calculus , 2008 .

[17]  Stefan Scholtes,et al.  Convergence Properties of a Regularization Scheme for Mathematical Programs with Complementarity Constraints , 2000, SIAM J. Optim..

[18]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[19]  Bernardo K. Pagnoncelli,et al.  Chance-constrained problems and rare events: an importance sampling approach , 2016, Math. Program..

[20]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[21]  Abdel Lisser,et al.  A second-order cone programming approach for linear programs with joint probabilistic constraints , 2012, Oper. Res. Lett..

[22]  René Henrion,et al.  Convexity of chance constraints with independent random variables , 2008, Comput. Optim. Appl..

[23]  Margaret M. Wiecek,et al.  Robust Multiobjective Optimization for Decision Making Under Uncertainty and Conflict , 2016 .

[24]  Antonio Frangioni,et al.  Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support , 2016, Comput. Optim. Appl..

[25]  René Henrion,et al.  (Sub-)Gradient Formulae for Probability Functions of Random Inequality Systems under Gaussian Distribution , 2017, SIAM/ASA J. Uncertain. Quantification.

[26]  Martin Branda,et al.  Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers , 2016, Journal of Optimization Theory and Applications.

[27]  R. Wets,et al.  Stochastic programming , 1989 .

[28]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[29]  Shabbir Ahmed,et al.  On quantile cuts and their closure for chance constrained optimization problems , 2018, Math. Program..

[30]  Thorsten Koch,et al.  Evaluating Gas Network Capacities , 2015, MOS-SIAM Series on Optimization.

[31]  Maria Gabriela Martinez,et al.  Regularization methods for optimization problems with probabilistic constraints , 2013, Math. Program..

[32]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[33]  Christian Kirches,et al.  Mixed-integer nonlinear optimization*† , 2013, Acta Numerica.

[34]  Maarten H. van der Vlerk,et al.  Integrated Chance Constraints: Reduced Forms and an Algorithm , 2006, Comput. Manag. Sci..

[35]  Darinka Dentcheva,et al.  Concavity and efficient points of discrete distributions in probabilistic programming , 2000, Math. Program..

[36]  James R. Luedtke A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support , 2013, Mathematical Programming.

[37]  Vlasta Kanková,et al.  On the convergence rate of empirical estimates in chance constrained stochastic programming , 1990, Kybernetika.

[38]  Yong Wang,et al.  Asymptotic Analysis of Sample Average Approximation for Stochastic Optimization Problems with Joint Chance Constraints via Conditional Value at Risk and Difference of Convex Functions , 2014, J. Optim. Theory Appl..

[39]  Zechun Hu,et al.  Chance-Constrained Two-Stage Unit Commitment Under Uncertain Load and Wind Power Output Using Bilinear Benders Decomposition , 2016, IEEE Transactions on Power Systems.

[40]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[41]  M. Innorta,et al.  A mixed integer nonlinear optimization model for gas sale company , 2006, Optim. Lett..

[42]  René Henrion,et al.  A joint model of probabilistic/robust constraints for gas transport management in stationary networks , 2017, Comput. Manag. Sci..

[43]  Shabbir Ahmed,et al.  Convex relaxations of chance constrained optimization problems , 2014, Optim. Lett..

[44]  István Deák Subroutines for Computing Normal Probabilities of Sets—Computer Experiences , 2000, Ann. Oper. Res..

[45]  René Henrion,et al.  Hölder and Lipschitz stability of solution sets in programs with probabilistic constraints , 2004, Math. Program..

[46]  René Henrion,et al.  A Gradient Formula for Linear Chance Constraints Under Gaussian Distribution , 2012, Math. Oper. Res..

[47]  Michel Gendreau,et al.  The Benders decomposition algorithm: A literature review , 2017, Eur. J. Oper. Res..

[48]  René Henrion,et al.  On the quantification of nomination feasibility in stationary gas networks with random load , 2016, Math. Methods Oper. Res..

[49]  René Henrion A Critical Note on Empirical (Sample Average, Monte Carlo) Approximation of Solutions to Chance Constrained Programs , 2011, System Modelling and Optimization.

[50]  James R. Luedtke,et al.  A Sample Approximation Approach for Optimization with Probabilistic Constraints , 2008, SIAM J. Optim..

[51]  Jérôme Malick,et al.  Eventual convexity of probability constraints with elliptical distributions , 2019, Math. Program..

[52]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[53]  Ronald Hochreiter,et al.  A difference of convex formulation of value-at-risk constrained optimization , 2010 .

[54]  A. Genz,et al.  Computation of Multivariate Normal and t Probabilities , 2009 .

[55]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[56]  Ming Zhao,et al.  A polyhedral study on chance constrained program with random right-hand side , 2017, Math. Program..

[57]  Wim van Ackooij,et al.  Eventual convexity of chance constrained feasible sets , 2015 .

[58]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[59]  András Prékopa,et al.  Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution , 1990, ZOR Methods Model. Oper. Res..

[60]  Liwei Zhang,et al.  A Smoothing Function Approach to Joint Chance-Constrained Programs , 2014, J. Optim. Theory Appl..

[61]  Miguel A. Lejeune Pattern definition of the p-efficiency concept , 2012, Ann. Oper. Res..