Orthogonal Decomposition of Symmetric Tensors
暂无分享,去创建一个
[1] B. Sturmfels,et al. Binomial Ideals , 1994, alg-geom/9401001.
[2] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[3] Tamara G. Kolda,et al. Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..
[4] M. SIAMJ.. A COUNTEREXAMPLE TO THE POSSIBILITY OF AN EXTENSION OF THE ECKART – YOUNG LOW-RANK APPROXIMATION THEOREM FOR THE ORTHOGONAL RANK TENSOR DECOMPOSITION , 2003 .
[5] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[6] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[7] Pierre Comon,et al. Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.
[8] Claudiu Raicu. Secant varieties of Segre–Veronese varieties , 2010, 1011.5867.
[9] J. Landsberg. Tensors: Geometry and Applications , 2011 .
[10] J. Landsberg,et al. Equations for secant varieties of Veronese and other varieties , 2011, 1111.4567.
[11] Anima Anandkumar,et al. A Method of Moments for Mixture Models and Hidden Markov Models , 2012, COLT.
[12] B. Sturmfels,et al. The number of eigenvalues of a tensor , 2010, 1004.4953.
[13] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[14] Luke Oeding,et al. Eigenvectors of tensors and algorithms for Waring decomposition , 2011, J. Symb. Comput..
[15] Zhou Hui-xia. Newton Method for Computing the Z-Eigenvalues of a Real Symmetric Tensor , 2014 .
[16] Anima Anandkumar,et al. Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..