A New Pseudoinvariant Near-Infrared Threshold Method for Relative Radiometric Correction of Aerial Imagery

[1]  Michael Sommer,et al.  UAV-Based Estimation of Carbon Exports from Heterogeneous Soil Landscapes—A Case Study from the CarboZALF Experimental Area , 2016, Sensors.

[2]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[3]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[4]  Neil Flood,et al.  Continuity of Reflectance Data between Landsat-7 ETM+ and Landsat-8 OLI, for Both Top-of-Atmosphere and Surface Reflectance: A Study in the Australian Landscape , 2014, Remote. Sens..

[5]  William J. Volchok,et al.  Radiometric scene normalization using pseudoinvariant features , 1988 .

[6]  Diofantos G. Hadjimitsis,et al.  The use of selected pseudo-invariant targets for the application of atmospheric correction in multi-temporal studies using satellite remotely sensed imagery , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[7]  M. Simard,et al.  A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States , 2018 .

[8]  Kyle A. Hartfield,et al.  Woody Cover Estimates in Oklahoma and Texas Using a Multi-Sensor Calibration and Validation Approach , 2018, Remote. Sens..

[9]  D. Baldocchi,et al.  Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales , 2017 .

[10]  Qiusheng Wu,et al.  Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. , 2019, Remote sensing of environment.

[11]  H. Lee The potential implementation of green infrastructure assessment using high-resolution National Agriculture Imagery Program data for sustainable hazard mitigation , 2018 .

[12]  C. Woodcock,et al.  The status of agricultural lands in Egypt: The use of multitemporal NDVI features derived from landsat TM☆ , 1996 .

[13]  S. Goetz,et al.  Radiometric rectification - Toward a common radiometric response among multidate, multisensor images , 1991 .

[14]  D. C. Robertson,et al.  MODTRAN cloud and multiple scattering upgrades with application to AVIRIS , 1998 .

[15]  Kunwar K. Singh,et al.  The managed clearing: An overlooked land-cover type in urbanizing regions? , 2018, PloS one.

[16]  Fei Yuan,et al.  High-resolution Land Cover and Impervious Surface Classifications in the Twin Cities Metropolitan Area with NAIP Imagery , 2016 .

[17]  John Hogland,et al.  Mapping Forest Characteristics at Fine Resolution across Large Landscapes of the Southeastern United States Using NAIP Imagery and FIA Field Plot Data , 2018, ISPRS Int. J. Geo Inf..

[18]  Timothy A. Warner,et al.  Land Cover Classification and Feature Extraction from National Agriculture Imagery Program (NAIP) Orthoimagery: A Review , 2017 .

[19]  Gregory A. Carter,et al.  The Use of Aerial RGB Imagery and LIDAR in Comparing Ecological Habitats and Geomorphic Features on a Natural versus Man-Made Barrier Island , 2016, Remote. Sens..

[20]  Ryan Anderson,et al.  CO-RIP: A Riparian Vegetation and Corridor Extent Dataset for Colorado River Basin Streams and Rivers , 2018, ISPRS Int. J. Geo Inf..

[21]  Thomas T. Veblen,et al.  Detection of spruce beetle-induced tree mortality using high- and medium-resolution remotely sensed imagery , 2015 .

[22]  Christopher E. Holden,et al.  Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014) , 2016 .

[23]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[24]  John Y. Takekawa,et al.  Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes , 2016 .

[25]  J. Townshend,et al.  Global surface reflectance products from Landsat: Assessment using coincident MODIS observations , 2013 .

[26]  M. Claverie,et al.  Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. , 2016, Remote sensing of environment.

[27]  Chenghai Yang,et al.  Crop Classification and LAI Estimation Using Original and Resolution-Reduced Images from Two Consumer-Grade Cameras , 2017, Remote. Sens..

[28]  Zhe Zhu,et al.  Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications , 2017 .

[29]  Xuexia Chen,et al.  A simple and effective radiometric correction method to improve landscape change detection across sensors and across time , 2005 .

[30]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .

[31]  Krista L. Merry,et al.  Estimation of urban woody vegetation cover using multispectral imagery and LiDAR , 2018 .

[32]  Stuart Barr,et al.  Commercial Off-the-Shelf Digital Cameras on Unmanned Aerial Vehicles for Multitemporal Monitoring of Vegetation Reflectance and NDVI , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Marvin E. Bauer,et al.  Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features , 1994, IEEE Trans. Geosci. Remote. Sens..

[34]  Russell A. White,et al.  Classification of Plot-Level Fire-Caused Tree Mortality in a Redwood Forest Using Digital Orthophotography and LiDAR , 2014, Remote. Sens..

[35]  Yuhong He,et al.  Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland , 2017 .

[36]  C. Small Multitemporal analysis of urban reflectance , 2002 .

[37]  Xavier Pons,et al.  Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[38]  Zhe Zhu,et al.  Current status of Landsat program, science, and applications , 2019, Remote Sensing of Environment.

[39]  Xavier Pons,et al.  Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy , 2017, Remote. Sens..

[40]  Matthew Shapero,et al.  Implications of changing spatial dynamics of irrigated pasture, California's third largest agricultural water use. , 2017, The Science of the total environment.