Airborne Ku-band polarimetric radar remote sensing of terrestrial snow cover

Preliminary analyses of the POLSCAT data acquired from the CLPX-II in winter 2006-2007 are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation. We observed about 0.2 to 0.4 dB increases in backscatter for every 1 cm SWE accumulation for sage brush and agricultural fields. The co-polarized VV and HH radar responses are similar, while the cross-polarized (VH or HV) echoes showed greater response to the change of SWE. The data also showed the impact of surface hoar growth and freeze/thaw cycles, which created large snow grain sizes and ice lenses, respectively, and consequently increased the radar signals by a few dBs.

[1]  David G. Long,et al.  Improved resolution backscatter measurements with the SeaWinds pencil-beam scatterometer , 2000, IEEE Trans. Geosci. Remote. Sens..

[2]  Leung Tsang,et al.  Multiple scattering of waves by dense random distributions of sticky particles for applications in microwave scattering by terrestrial snow , 2007 .

[3]  Jiancheng Shi,et al.  Estimation of snow water equivalence with two Ku-band dual polarization radar , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[4]  W. Timothy Liu,et al.  QuikSCAT wind retrievals for tropical cyclones , 2003, IEEE Trans. Geosci. Remote. Sens..

[5]  Jiancheng Shi,et al.  Estimation of snow water equivalence using SIR-C/X-SAR. I. Inferring snow density and subsurface properties , 2000, IEEE Trans. Geosci. Remote. Sens..

[6]  Kamal Sarabandi,et al.  Radar measurements of snow: experiment and analysis , 1998, IEEE Trans. Geosci. Remote. Sens..

[7]  Tazio Strozzi,et al.  Backscattering measurements of alpine snowcovers at 5.3 and 35 GHz , 1998, IEEE Trans. Geosci. Remote. Sens..

[8]  L. Tsang,et al.  3 – EFFECTIVE PROPAGATION CONSTANTS IN MEDIA WITH DENSELY DISTRIBUTED DIELECTRIC PARTICLES OF MULTIPLE SIZES AND PERMITTIVITIES , 1989 .

[9]  Fawwaz T. Ulaby,et al.  The active and passive microwave response to snow parameters: 1. Wetness , 1980 .

[10]  Christian Mätzler,et al.  Applications of the interaction of microwaves with the natural snow cover , 1987 .

[11]  A. Wiesmann,et al.  Active microwave signatures of snow covers at 5.3 and 35 GHz , 1997 .

[12]  Fawwaz T. Ulaby,et al.  The active and passive microwave response to snow parameters: 2. Water equivalent of dry snow , 1980 .

[13]  Son V. Nghiem,et al.  Global snow cover monitoring with spaceborne Ku-band scatterometer , 2001, IEEE Trans. Geosci. Remote. Sens..

[14]  F. Ulaby,et al.  Snowcover Influence on Backscattering from Terrain , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Jiancheng Shi,et al.  Estimation of snow water equivalence using SIR-C/X-SAR. II. Inferring snow depth and particle size , 2000, IEEE Trans. Geosci. Remote. Sens..

[16]  Christian Mätzler,et al.  Microwave permittivity of dry sand , 1996, IEEE Trans. Geosci. Remote. Sens..

[17]  Simon H. Yueh,et al.  Polarimetric radar remote sensing of ocean surface wind , 2002, IEEE Trans. Geosci. Remote. Sens..