Online Model Adaptation for UAV Tracking with Convolutional Neural Network

Unmanned aerial vehicle (UAV) tracking is a challenging problem and a core component of UAV applications. CNNs have shown impressive performance in computer vision applications, such as object detection, image classification and so on. In this work, a locally connected layer is employed in a CNN architecture to extract robust features. We also utilize focal loss function to focus training on hard examples. Our CNN is first pre-trained offline to learn robust features. The training data is classified according to the texture, color, size of the target and the background information properties. In a subsequent online tracking phase, this CNN is fine-tuned to adapt to the appearance changes of the tracked target. We applied this approach to the problem of UAV tracking and performed extensive experimental results on large scale benchmark datasets. Results obtained show that the proposed method performs favorably against the state-of-the-art trackers in terms of accuracy, robustness and efficiency.

[1]  Robert Laganière,et al.  Scalable Kernel Correlation Filter with Sparse Feature Integration , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[2]  Ming Yang,et al.  DeepFace: Closing the Gap to Human-Level Performance in Face Verification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Luca Bertinetto,et al.  Staple: Complementary Learners for Real-Time Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Abhinav Gupta,et al.  Transferring Rich Feature Hierarchies for Robust Visual Tracking , 2015, ArXiv.

[5]  Fatih Murat Porikli,et al.  Covariance Tracking using Model Update Based on Lie Algebra , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[6]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[9]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[10]  Ming-Hsuan Yang,et al.  Long-term correlation tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Michael Felsberg,et al.  Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking , 2016, ECCV.

[13]  Seunghoon Hong,et al.  Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network , 2015, ICML.

[14]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Arnold W. M. Smeulders,et al.  UvA-DARE (Digital Academic Repository) Siamese Instance Search for Tracking , 2016 .

[16]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[17]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Changsheng Xu,et al.  Max-Confidence Boosting With Uncertainty for Visual Tracking , 2015, IEEE Transactions on Image Processing.

[19]  Narendra Ahuja,et al.  Robust Visual Tracking Via Consistent Low-Rank Sparse Learning , 2014, International Journal of Computer Vision.

[20]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Zhe Chen,et al.  MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[23]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[26]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[27]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[28]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[29]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[30]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[31]  Changsheng Xu,et al.  Robust Visual Tracking via Exclusive Context Modeling , 2016, IEEE Transactions on Cybernetics.

[32]  Yiannis Demiris,et al.  Visual Tracking Using Attention-Modulated Disintegration and Integration , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[34]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[35]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[37]  Xiaogang Wang,et al.  STCT: Sequentially Training Convolutional Networks for Visual Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[39]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[40]  Yiannis Demiris,et al.  Attentional Correlation Filter Network for Adaptive Visual Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Honglak Lee,et al.  Learning hierarchical representations for face verification with convolutional deep belief networks , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Xiaogang Wang,et al.  Visual Tracking with Fully Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[44]  Dit-Yan Yeung,et al.  Learning a Deep Compact Image Representation for Visual Tracking , 2013, NIPS.

[45]  Luca Bertinetto,et al.  End-to-End Representation Learning for Correlation Filter Based Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[47]  Michael Felsberg,et al.  Convolutional Features for Correlation Filter Based Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[48]  Yann LeCun,et al.  Emergence of Complex-Like Cells in a Temporal Product Network with Local Receptive Fields , 2010, ArXiv.

[49]  Qingming Huang,et al.  Hedged Deep Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Rogério Schmidt Feris,et al.  A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection , 2016, ECCV.

[51]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[52]  Bernard Ghanem,et al.  A Benchmark and Simulator for UAV Tracking , 2016, ECCV.