Products with variables from low-dimensional affine spaces and shifted power identity testing in finite fields

Motivated by some algorithmic applications, we obtain upper bounds on the number of solutions of the equation x"1...x"[email protected] with variables x"1,...,x"n from a low-dimensional affine space in a high degree extension of a finite field. These are analogues of several recent bounds on the number of solutions of congruences of the similar form with variables in short intervals. We apply this to the recently introduced algorithmic problem of identity testing between shifted power functions in finite fields.

[1]  Alain Poli Applied Algebra, Algorithms and Error-Correcting Codes, 2nd International Conference, AAECC-2, Toulouse, France, October 1-5, 1984, Proceedings , 1986, AAECC.

[2]  Sean Hallgren,et al.  Quantum algorithms for some hidden shift problems , 2003, SODA '03.

[3]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[4]  Alexander Russell,et al.  Classical and quantum function reconstruction via character evaluation , 2004, J. Complex..

[5]  Mei-Chu Chang,et al.  Burgess Inequality In $${\mathbb {F}_{p^2}}$$ , 2009 .

[6]  Igor E. Shparlinski,et al.  On the Hidden Shifted Power Problem , 2011, SIAM J. Comput..

[7]  Mei-Chu Chang,et al.  BURGESS INEQUALITY IN Fp 2 , 2009 .

[8]  Igor E. Shparlinski,et al.  Concentration of points on curves in finite fields , 2013 .

[9]  Sergei Konyagin,et al.  Estimates of character sums in finite fields , 2010 .

[10]  Igor E. Shparlinski,et al.  Multiplicative congruences with variables from short intervals , 2012, Journal d'Analyse Mathematique.

[11]  Igor Shparlinski,et al.  On congruences with products of variables from short intervals and applications , 2012, 1203.0017.

[12]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[13]  Nitin Saxena,et al.  Algebraic independence and blackbox identity testing , 2013, Inf. Comput..

[14]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[15]  Zbigniew Jelonek,et al.  On the effective Nullstellensatz , 2005 .

[16]  Philippe Piret On the number of divisors of a polynomial over GF(2) , 1984, AAECC.

[17]  N. Katz An estimate for character sums , 1989 .

[18]  Carlos D'Andrea,et al.  Heights of varieties in multiprojective spaces and arithmetic Nullstellensatze , 2011, 1103.4561.

[19]  Wim van Dam,et al.  Quantum Algorithms for Weighing Matrices and Quadratic Residues , 2000, Algorithmica.

[20]  Mei-Chu Chang,et al.  On a question of Davenport and Lewis and new character sum bounds in finite fields , 2008 .