Magnetometer Calibration Using Inertial Sensors

In this paper, we present a practical algorithm for calibrating a magnetometer for the presence of magnetic disturbances and for magnetometer sensor errors. To allow for combining the magnetometer measurements with inertial measurements for orientation estimation, the algorithm also corrects for misalignment between the magnetometer and the inertial sensor axes. The calibration algorithm is formulated as the solution to a maximum likelihood problem, and the computations are performed offline. The algorithm is shown to give good results using data from two different commercially available sensor units. Using the calibrated magnetometer measurements in combination with the inertial sensors to determine the sensor’s orientation is shown to lead to significantly improved heading estimates.

[1]  Karl Johan Åström Maximum likelihood and prediction error methods , 1980, Autom..

[2]  Arno Solin,et al.  Sigma-Point Filtering and Smoothing Based Parameter Estimation in Nonlinear Dynamic Systems , 2015, 1504.06173.

[3]  Xiang Li,et al.  A new calibration method for tri-axial field sensors in strap-down navigation systems , 2012 .

[4]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[5]  Valérie Renaudin,et al.  Complete Triaxis Magnetometer Calibration in the Magnetic Domain , 2010, J. Sensors.

[6]  Sabine Van Huffel,et al.  Consistent least squares fitting of ellipsoids , 2004, Numerische Mathematik.

[7]  M. Shuster,et al.  Complete linear attitude-independent magnetometer calibration , 2002 .

[8]  Thomas B. Schön,et al.  Calibration of a magnetometer in combination with inertial sensors , 2012, 2012 15th International Conference on Information Fusion.

[9]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[10]  E. Weinstein,et al.  A new method for evaluating the log-likelihood gradient, the Hessian, and the Fisher information matrix for linear dynamic systems , 1989, IEEE Trans. Inf. Theory.

[11]  Jack B. Kuipers,et al.  Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality , 2002 .

[12]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[13]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[14]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[15]  Aboelmagd Noureldin,et al.  Three-Dimensional Magnetometer Calibration With Small Space Coverage for Pedestrians , 2015, IEEE Sensors Journal.

[16]  Jeroen D. Hol,et al.  Sensor Fusion and Calibration of Inertial Sensors, Vision, Ultra-Wideband and GPS , 2011 .

[17]  Giuseppe Carlo Calafiore,et al.  Approximation of n-dimensional data using spherical and ellipsoidal primitives , 2002, IEEE Trans. Syst. Man Cybern. Part A.

[18]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[19]  Eric Walter,et al.  Identifiability of State Space Models , 1982 .

[20]  Mei-ping Wu,et al.  Attitude-independent magnetometer calibration for marine magnetic surveys: regularization issue , 2013 .

[21]  M. Shuster,et al.  Three-axis attitude determination from vector observations , 1981 .

[22]  Suzanne Lesecq,et al.  Calibration methods for inertial and magnetic sensors , 2009 .

[23]  Giancarlo Troni,et al.  Adaptive Estimation of Measurement Bias in Three-Dimensional Field Sensors with Angular Rate Sensors: Theory and Comparative Experimental Evaluation , 2013, Robotics: Science and Systems.

[24]  W. Gander,et al.  Least-squares fitting of circles and ellipses , 1994 .

[25]  William Rowan Hamilton,et al.  ON QUATERNIONS, OR ON A NEW SYSTEM OF IMAGINARIES IN ALGEBRA , 1847 .

[26]  Fredrik Gustafsson,et al.  Statistical Sensor Fusion , 2013 .

[27]  Carlos Silvestre,et al.  Geometric Approach to Strapdown Magnetometer Calibration in Sensor Frame , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[28]  Thomas B. Schön,et al.  Maximum likelihood calibration of a magnetometer using inertial sensors , 2014 .

[29]  Demoz Gebre-Egziabher,et al.  Calibration of Strapdown Magnetometers in Magnetic Field Domain , 2006 .

[30]  Thomas B. Schön,et al.  System identification of nonlinear state-space models , 2011, Autom..

[31]  Fredrik Lindsten,et al.  Backward Simulation Methods for Monte Carlo Statistical Inference , 2013, Found. Trends Mach. Learn..

[32]  Manon Kok,et al.  Probabilistic modeling for positioning applications using inertial sensors , 2014 .

[33]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[34]  F. Markley Attitude Error Representations for Kalman Filtering , 2003 .

[35]  Meiping Wu,et al.  Constrained total least-squares calibration of three-axis magnetometer for vehicular applications , 2013 .

[36]  Yuanxin Wu,et al.  On Calibration of Three-Axis Magnetometer , 2015, IEEE Sensors Journal.

[37]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[38]  Johan Dahlin,et al.  Newton-based maximum likelihood estimation in nonlinear state space models , 2015, 1502.03655.